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Background: Efficient Energy Management
Energy savings is crucial to fight against climate change

ﬁ ﬁ In the European Union (EU), individual households represented 26% of final energy consumption

, Electricity accounted for a quarter of total households energy consumption
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Background: Efficient Energy Management
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Electricity suppliers need to play an active role in this process



Background: Efficient Energy Management

How to convince clients to change their consumption behavior ?

By offering personalized contracts

E .a = 50% discount to charge your electric vehicle by night *

= 50% discount to reduce your heater usage during peak hours @ij
=8

By providing detailed feedback about their consumption

\ i
How much does your heater cost you per month?

Household
electricity consumption

Solutions/advices based on customers’ characteristic



Background: Smart Meters Deployment
Millions of Smart Meters deployed in individual households
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Challenges

These data are store in large electricity consumption databases
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Electricity
consumption database
(Millions of clients)

Recorded smart meter consumption

Characteristics

Which appliances are present
in the house?

How the client use them?
What proportion of

consumption does each
appliance account for?



Challenges

Can we propose trageted and scalable approaches
for electricity consumption time series analytics?

. Objectives
\ 1. Detect appliances present in the house
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. 3. Estimate appliar{ce’s consumption
Challenges

Large electricity
consumption
database

Few labeled data
available
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Proposed solution: Appliance Detection as TSC

Appliance detection as a binary Time Series Classification (TSC) problem

Time series Classification
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Deep learning-based approaches are the most accurate and scalable to large dataset of long-time series
(i.e. Convolutional-based as Arsenal, ResNet, InceptionTime) [Petralia et al. 2023]

However, reported accuracies are still rather low for real-world applications...



Proposed solution: ADF&TransApp

The Appliance Detection Framework: enhances classifiers’ performance on appliance detection tasks

An ‘ensemble approach’ for
appliance detection designed for
long and variable length
consumption series

Electricity consumption database iiiil
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Proposed solution: ADF&TransApp

TransApp: a pre-train deep-learning time series classifier
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Large non-labeled
consumption data

consumption channel masking
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binary mask

Household label

Small labeled dataset
100 — 1000 instances

1. Self-supervised pretraining
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Proposed solution: ADF&TransApp - results

Appliance detection accuracy results

Average results over 7 different detection cases (EDF dataset)
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TransAppPT-l: pretrained on a large
non-labeled dataset composed of
200K customers

better
F1-Macro Score

ADF makes TransApp scalable to large electricity databases of long consumption series
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Ongoing work: DeviceScope

ADF&TransApp can accurately detect the appliance presence, but...
can we localize the appliance activation time?
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Ongoing work: DeviceScope

DeviceScope: An interactive system to browse, detect, and localize appliance patterns
in electricity consumption time series
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https://devicescope.streamlit.app/

Ongoing work: Energy disaggregation

Estimate appliances individual power consumption
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We recently proposed a novel deep-learning architecture for energy disaggregation that
takes into account the non-stationarity nature of electricity consumption data 14



Conclusion

To wrap up

* The large amount of electricity consumption data and the lack of labels
make it challenging to train accurate solutions

* This PhD work proposes new scalable solutions for electricity time series
analytics

—
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Appliance detection can be cast as a TSC problem

2. Our ADF&TransApp is an accurate and scalable solution to detect
appliances in electricity consumption series

3. Our DeviceScope effectively localizes appliance use

 Future research direction: large electricity time series model
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Thank you!

Want to learn more about
this PhD work?
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Contact: adrien.petralia@gmail.com
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e and feel free to join the
/| 5 ADF&TransApp paper presentation
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