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Background: Efficient Energy Management
Energy savings is crucial to fight against climate change

ﬁ ﬁ In the European Union (EU), individual households represented 26% of final energy consumption

, Electricity accounted for a quarter of total households energy consumption
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Background: Efficient Energy Management

v Smoothed daily demand

Reducing peak demand
&P v' Reduced need of fossil energy
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Electricity suppliers need to play an active role in this process

How to convince clients to change their consumption behavior ?

By offering personalized contracts!
= 50% discount to charge your electric vehicle by night .&"

.E = 50% discount to reduce your heater usage during peak hours @D
=218



Background: Gathering consumers’ data

However, suppliers need to know which appliances are owned by customers...

— 8
\ 1. Time consuming
N
@ 2. Prone to error

3. Not well received by customers

Ask directly customers?

Millions of Smart Meters deployed in individual households
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Background: Electricity consumption data

Suppliers collect increasingly larger amounts of electricity consumption data.
Only some household characteristics are
available and trustable

Electricity Consumption Database &
(Millions of clients) &L
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Background: Appliance Detection

Detecting appliances using Smart Meters series can be
cast as a Binary Time Series Classification Problem
[Deng et al. 2022, Petralia et al. 2023].

However, reported accuracy is rather low...

1. Very low frequency samples used by Smart
Meters

2. Lack of accurate labeled data

3. Doesn’t take into account the variable length
aspect of recorded consumption series
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Challenges

How to accurately and efficiently detect the appliances presentin
households using the recorded smart meter signal?

Challenges Solutions
1. Nature of electricity consumption data v' The Appliance Detection Framework (ADF)
Very low frequency reading used by Smart Meters » Improve classifiers detection accuracy
Long and variable length consumption series » Make classifiers insensitive to the length
2. Data size v' TransApp: a deep-learning time series classifiers
Few labeled data for training a solution » Pretrained on large amount of non-labeled
Large amount of non labeled data data to improve its accuracy
» Scalable to large database of long series
(thanks to ADF)
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Proposed Approach: ADF

The Appliance Detection
Framework

1. Slice series into subsequences and concatenate
with timestamp-encoded information

Electricity consumption database
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Proposed Approach: ADF

The Appliance Detection
Framework

1. Slice series into subsequences and concatenate
with timestamp-encoded information

2. TransApp predicts probabilities for each
subsequences

Electricity consumption database
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Proposed Approach: ADF

Electricity consumption database Iiiiil
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Proposed Approach: ADF

Electricity consumption database 5153
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Proposed Approach: TransApp

TransApp: A simple deep-learning architecture

Transformer Block
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A Transformer Block to learn electricity
consumption series representation

A strong convolutional Embedding Block
to extract localized patterns
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Proposed Approach: TransApp

TransApp: Two-steps training process

Large non-labeled
consumption data
> 100K instances

consumption channel masking
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Proposed Approach: TransApp

TransApp: Two-steps training process

Large non-labeled
consumption data
> 100K instances

consumption channel masking
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Small labeled dataset
100 — 1000 instances
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Experiments: appliance detection quality

Detection Accuracy Results

Average results over 7 different detection cases (EDF dataset) A0
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TransAppPT-l: pretrained on a large
non-labaled dataset composed of 200K customers

Our solution accurately detects different appliances in real-world scenarios
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Experiments: scalability

ADF makes TransApp scalable to large electricity databases of long consumption

series
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Conclusions

1. ADF improves quality detection of time series classifiers on appliance

detection problem.

TransApp effectively exploits large amount of unlabeled data.

. ADF renders TransApp scalable to real world consumption series
databases.

W N

* ADF & TransApp is an accurate and scalable solution to detect appliances
using real-world consumption smart meter signal.

* Promising open research direction: large time series
model for electricity consumption data analytics.
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Thank you!

Want to learn more about
our work?

Contact: adrien.petralia@gmail.com

ADF & TransApp Github and Paper

Université \J
l& Paris Cité : :EDF

° o or join me at the poster
=\ - session!

GUANGZHOU
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