

Deep Learning for Electricity Consumption Time Series Analytics

Presented by

Adrien Petralia

Supervised by

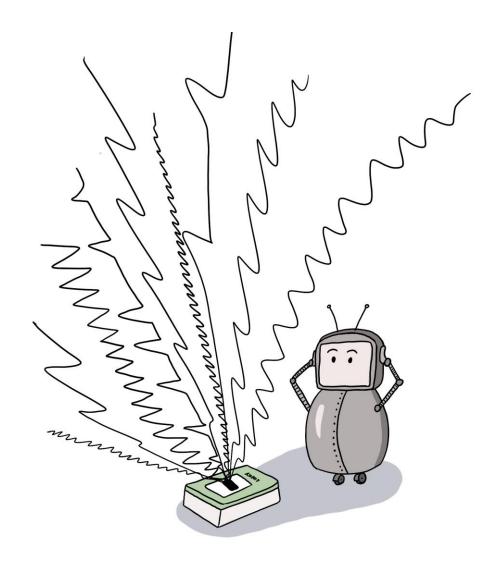
Prof. Themis PALPANAS

and

Philippe CHARPENTIER

II. Contributions

III.Conclusions



I. Introduction III. Conclusion

Renewables 2023 → 2035: From Renewable Surge to the Flexibility Challenge

COP28 (2023) → "beginning of the end of fossil fuels"

France 92 % low-carbon mix in 2023

Renewables share 120 TWh → 270–320 TWh (expected in 2035)

Context: Electricity Production

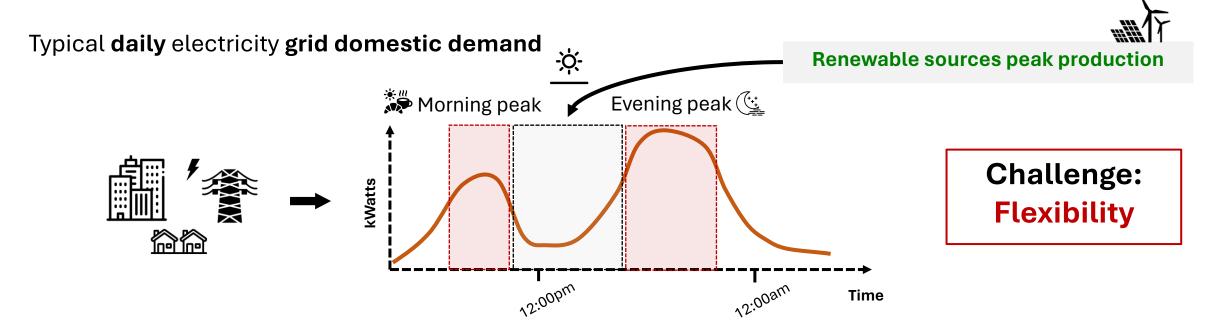
I. Introduction III. Conclusions III. Conclusions

Renewables 2023 → 2035: From Renewable Surge to the Flexibility Challenge

COP28 (2023) → "beginning of the end of fossil fuels"

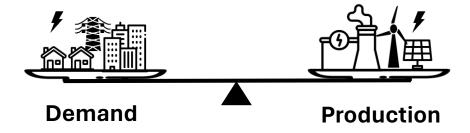
France 92 % low-carbon mix in 2023

Renewables share 120 TWh → 270–320 TWh (expected in 2035)



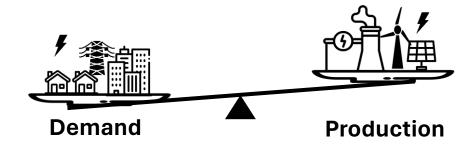
Context: The Flexibility Challenge

I. Introduction III. Contributions III. Conclusion



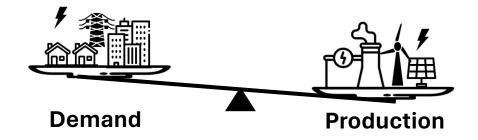
Context: The Flexibility Challenge

I. Introduction III. Contributions III. Conclusions

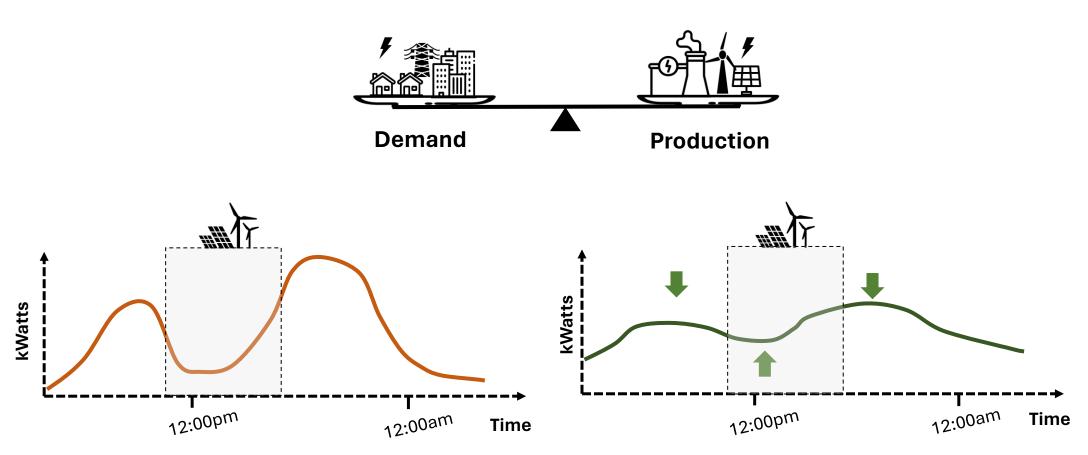


Context: The Flexibility Challenge

I. Introduction III. Contributions III. Conclusion



I. Introduction III. Contributions III. Conclusion

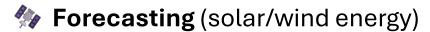


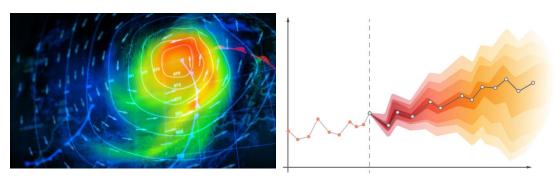
Today daily electricity domestic demand

Targeted smoothed daily domestic demand

I. Introduction III. Conclusions III. Conclusions

Different Possible Levers





Storage (hydro, batteries)

Thesis focus

Context: Consumers Engagement for Efficient Energy Management

I. Introduction III. Conclusion

How can suppliers convince consumers to change their behaviors?

1. Personalized contracts

Lower off-peak pricing, e.g., for **charging** your **Electric Vehicle** at night

2. Dynamic pricing

Criticial Peak Pricing: Higher rates during peak events

Peak Time Rebeat: Rewards for reducing use during peak times

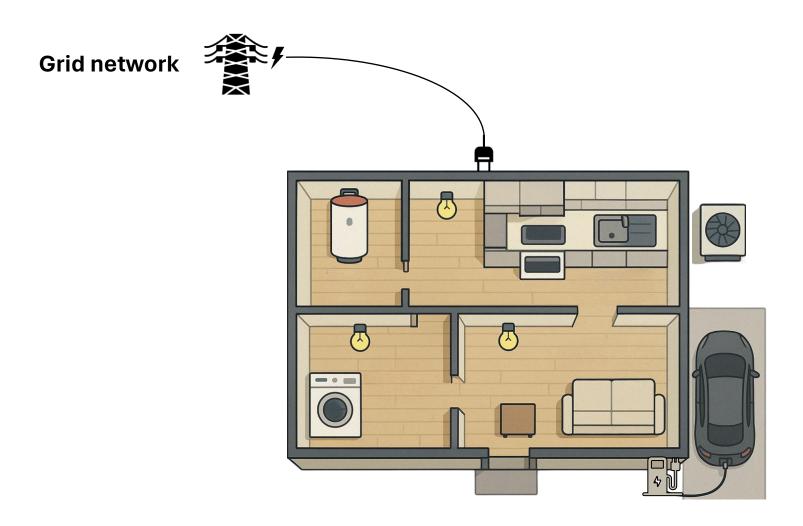
∰ 29%

How much does your heater **cost you per month**?

Solutions based on customers' characteristics/information!

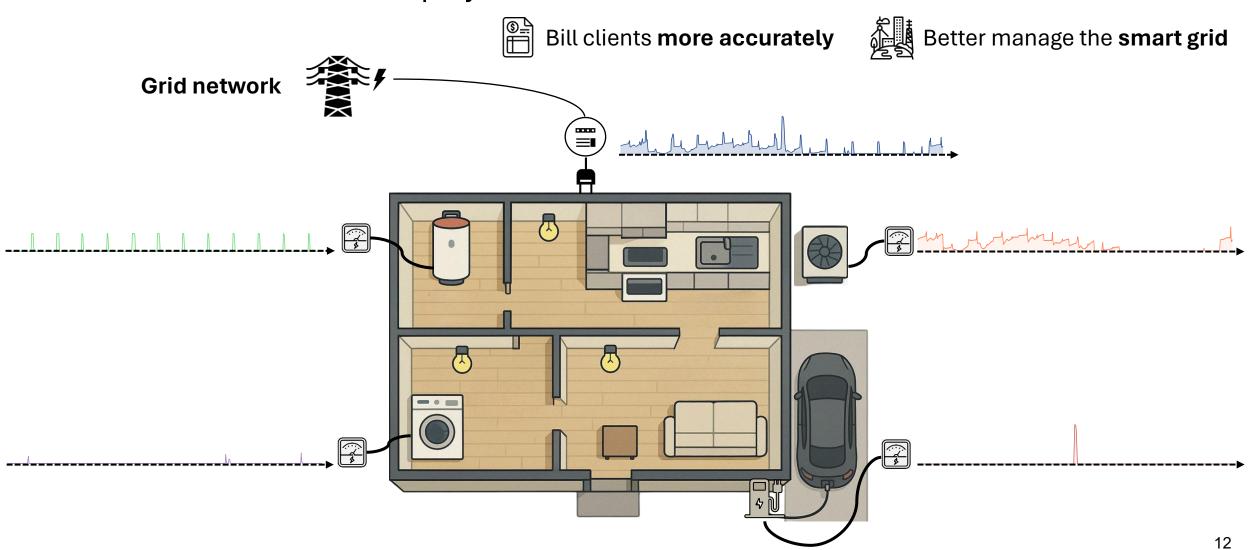
I. Introduction III. Contributions III. Conclusion

Millions of Smart Meters deployed in individual households



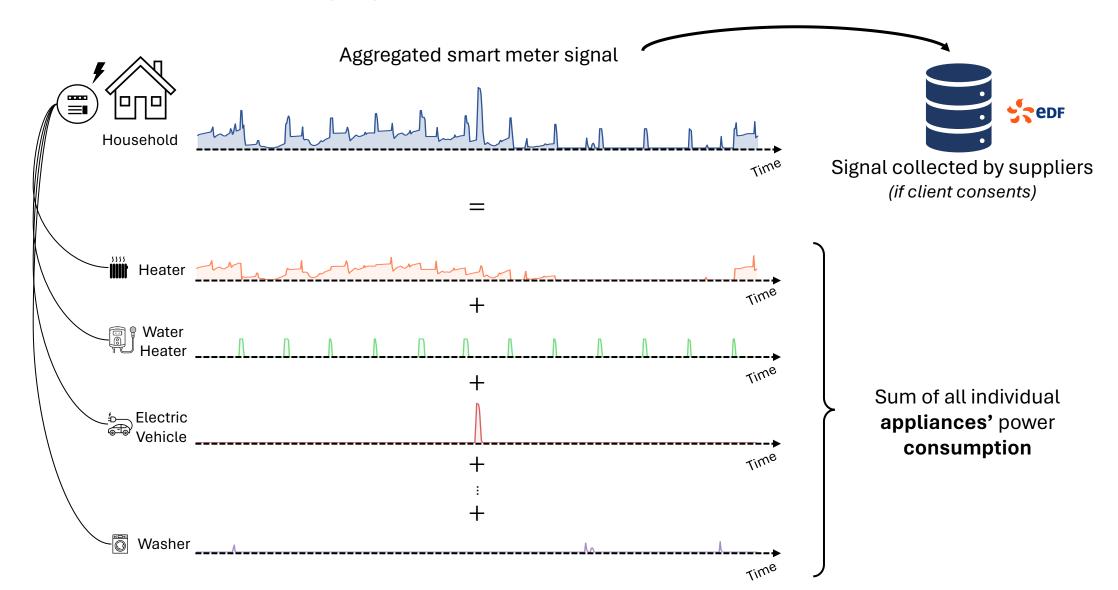
I. Introduction III. Contributions III. Conclusions

Millions of Smart Meters deployed in individual households



I. Introduction III. Contributions III. Conclusion

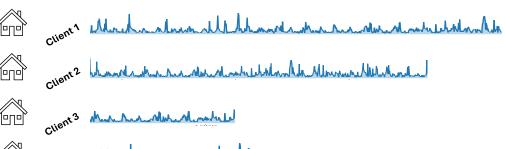
Millions of Smart Meters deployed in individual households

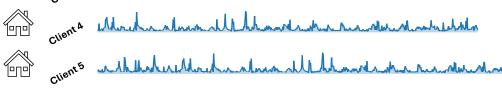


These data are stored in large **electricity consumption databases**

Electricity consumption database (Millions of clients)

Recorded smart meter consumption





Which appliances are present in the house?

Segment Customer Base **Personalized Contracts**

How does the client use them?

What **proportion** of consumption does each appliance account for?

Understand Appliance Uses Dynamic pricing

Deliver Appliance Feedback **Dynamic Pricing**

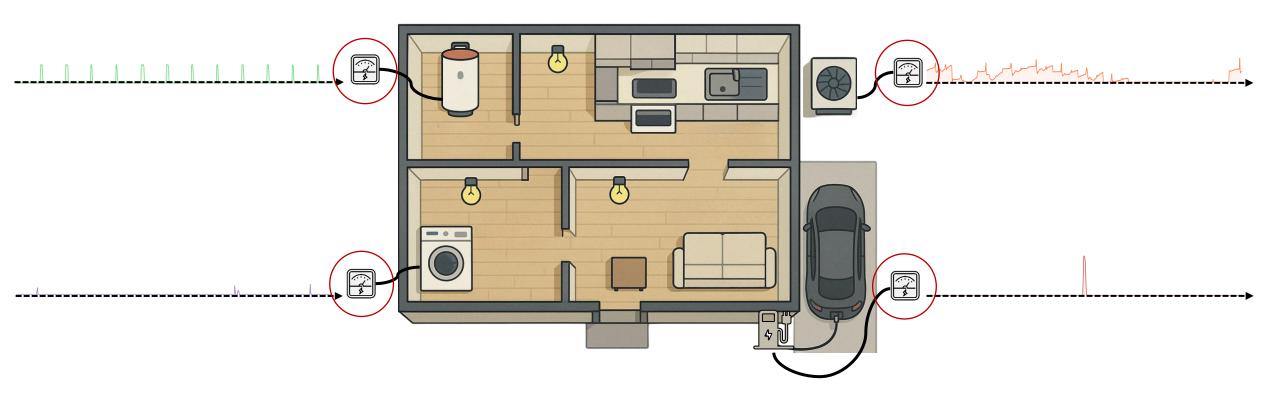
I. Introduction III. Contributions III. Conclusions

Intrusive Load Monitoring: sub-metering instrumentation

Expensive 500 to 1500\$/house

Time-consuming

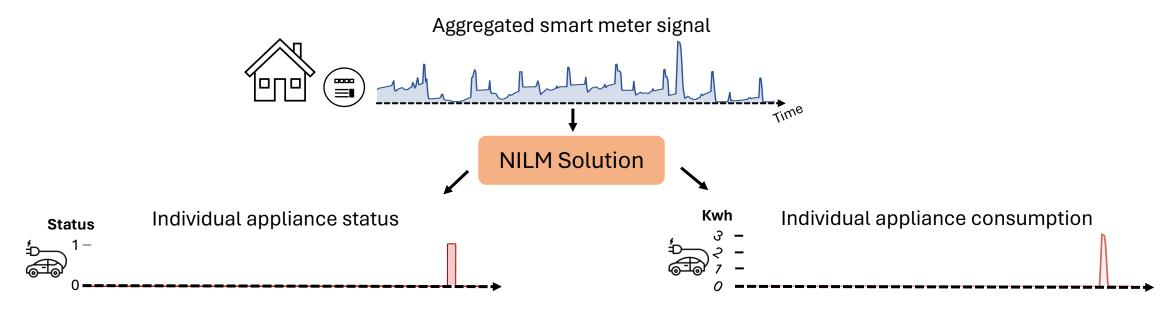
Not well-received



Background: Electricity Consumption Time Series Analytics

I. Introduction III. Contributions III. Conclusions

Non-Intrusive Load Monitoring (NILM): estimates power consumption, operational patterns, or on/off state of individual appliances using only the total aggregated signal



Early research (1992)

Combinatorial Optimization G. W. Hart [1]

ML Area (2010's)

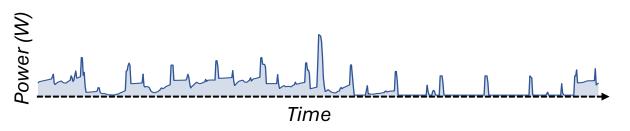
Sparse Coding, HMM Andrew Ng [2] **DL Area (2015-now)**

RNN, CNN, Transformer Jack Kelly [3]

Background: Electricity Consumption Time Series Analytics

I. Introduction III. Contributions III. Conclusion

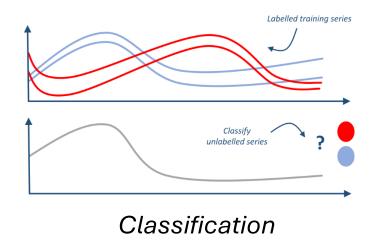
Recorded Electricity Consumption Signals are Time Series Data

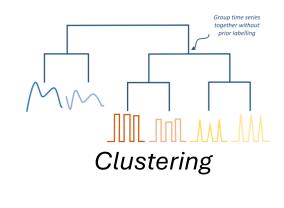


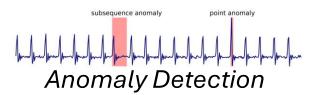
Sequence of ordered consumption index over time

Time Series Analytics

Forecasting

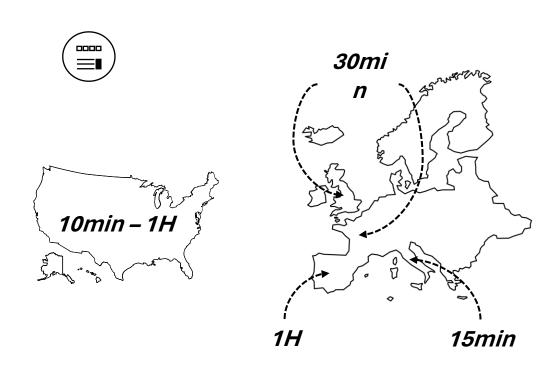




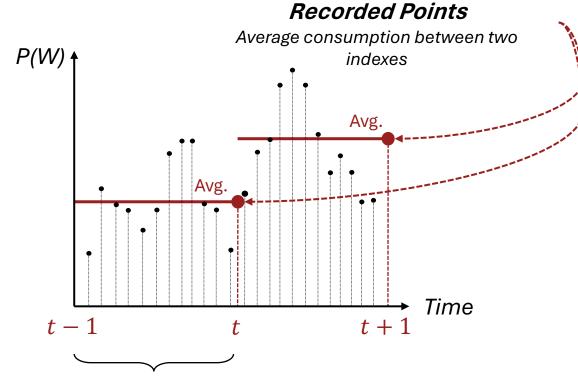


• • •

Common smart meters collect data at a very low-frequency



≈ **10** to **60min!**

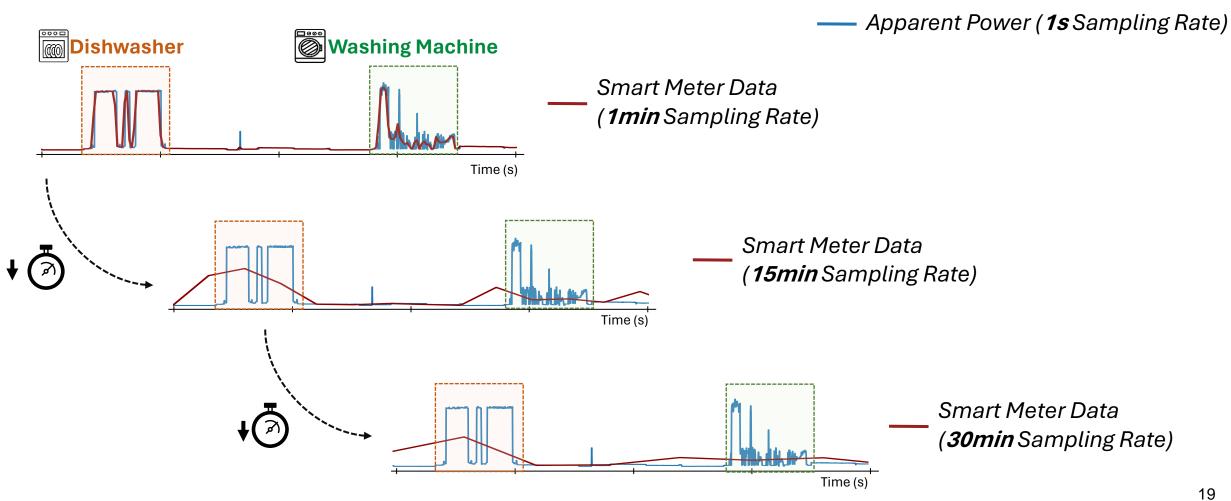


Smart Meter Reading Δ_t Time difference between two indexs

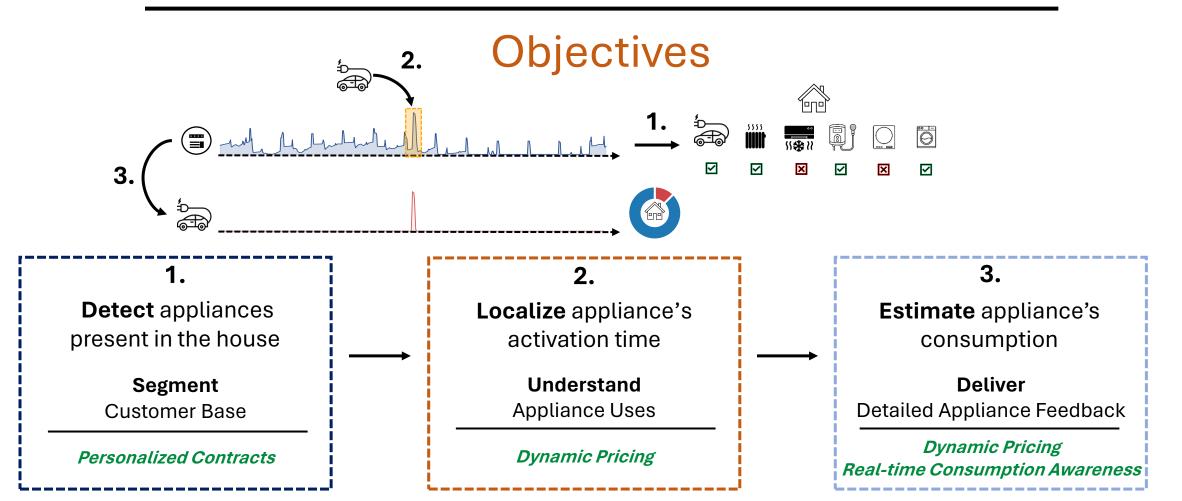
Challenge: Very Low-Frequency Smart Meter Reading

I. Introduction

Effect of Smart Meter Granularity on Electricity Consumption Curve Shape



Can we extract relevant information from electricity consumption time series collected by smart meters at a very low frequency?

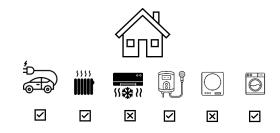


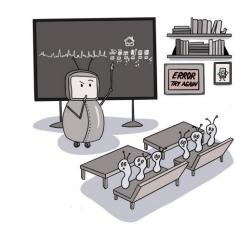
II.Contributions

- 1. Appliance Detection Presence in Consumer Households
- 2. Appliance Pattern Localization
- 3. Energy Disaggregation

III. Conclusions

1. Appliance Detection





Washing Machine

II. Contribution 1/3: Appliance Detection Presence in Consumer Households

III. Conclusions

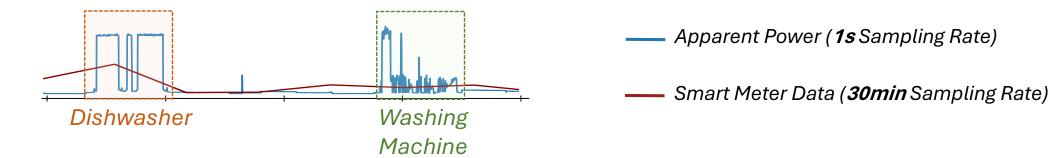
Water Heater

A subfield of NILM Example of signatures (1sec sampled data)

Based on appliance signature matching or event detection using high frequency sampled data (> 1Hz) $^{[1,2]}$

Kettle

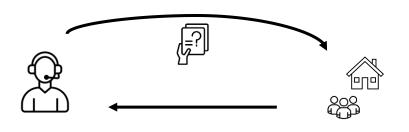
Approaches **not applicable** using **30min** sampled data!



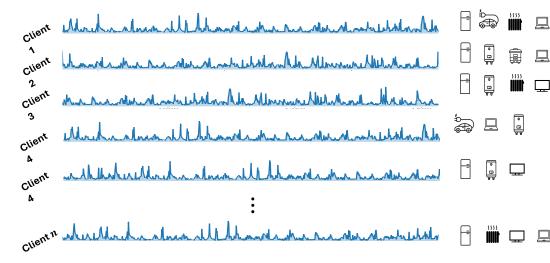
Dishwasher

EDF conducts surveys on customer samples

"Is the appliance **X** present in your household?"



Customers fill out a questionnaire in exchange for a small reward



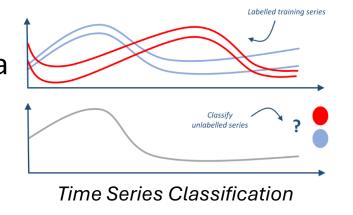
Proposed approach: Appliance Detection as a Time-Series Classification Problem

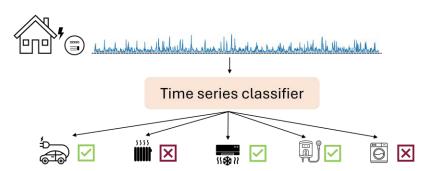
I. Introduction

II. Contribution 1/3: Appliance Detection Presence in Consumer Households

III. Conclusions

What if we approach this as a **Time Series Classification Problem?**





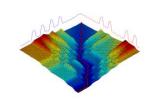
II. Contribution 1/3: Appliance Detection Presence in Consumer Households

III. Conclusions

Various time series classifiers exists in the literature

Nearest-neighbor based classifiers

KNN with Euclidian distance KNN with Dynamic Time Warping

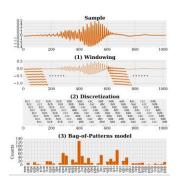


Motifs discovery based classifiers

Shapelets Transform Classifier

Dictionnary-based classifiers

BOSS BOSS ensemble cBOSS ensemble

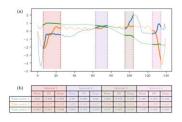


☐ Tree-based classifiers

Time Series Forest

RISE

DrCIF

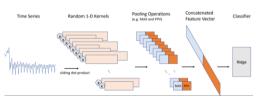


■ Random Convolutional based classifiers

Rocket

MiniRocket

Arsenal

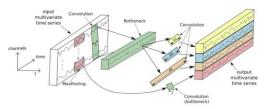


Deep-learning based classifiers

ConvNet

ResNet

InceptionTime



Which type of classifier delivers the best performance for our task?

Key Takeaway: Appliance Detection as a Time-Series Classification Problem

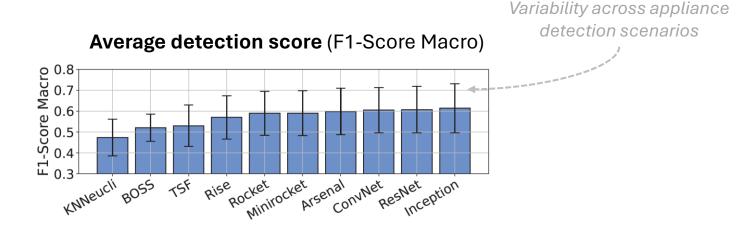
I. Introduction

II. Contribution 1/3: Appliance Detection Presence in Consumer Households

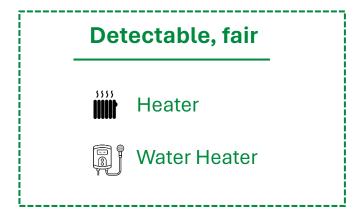
III. Conclusions

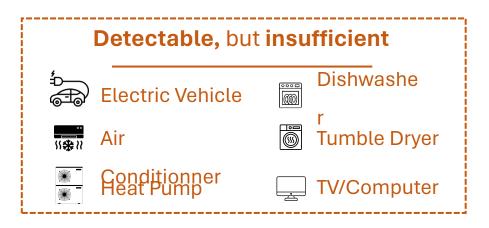
Overall results for all classifiers, using 30min sampled data

Convolutional-based methods and, specifically, deep-learning approaches perform the best on this task!



However, using **30min** sampled data **does not** allow for the detection of **all appliances**





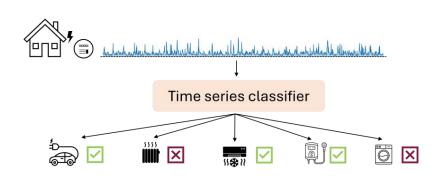
II. Contribution 1/3: Appliance Detection Presence in Consumer Households

III. Conclusions

Synthesis

Detecting appliances can be **cast** as a **Time Series Classification Problem** using **30min** sampled data

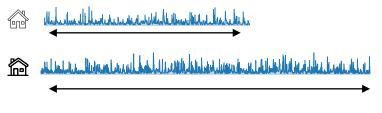
Deep Learning solutions are the most efficient and accurate



Limitations

Reported accuracy is still relatively low for real-world applications...

Doesn't take into account the variable length aspect of the series



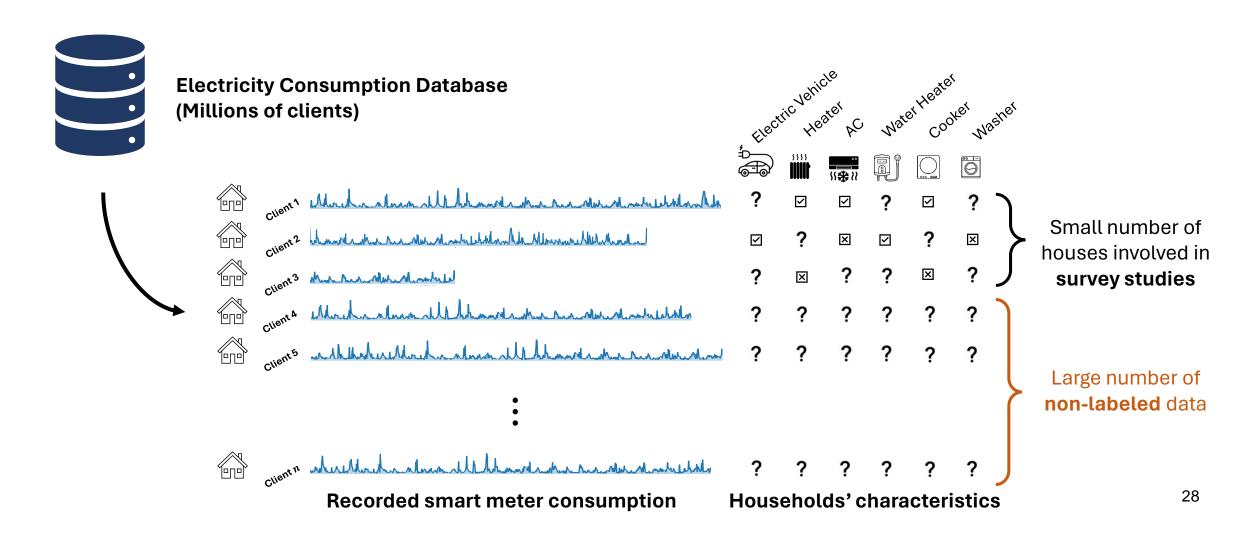
Lever: Large Amount of Unlabeled Electricity Consumption Data

I. Introduction

II. Contribution 1/3: Appliance Detection Presence in Consumer Households

III. Conclusions

Suppliers collect increasingly larger amounts of electricity consumption data



How to *enhance* the *accuracy* of *Appliance Detection Presence* in households using *very* low-frequency smart meter data?

Challenges

Nature of electricity consumption data
 Very low frequency reading used by Smart Meters
 Long and variable length consumption series

2. Data size

Few labeled data for training a solution **Large amount** of non-labeled data

How to *enhance* the *accuracy* of *Appliance Detection Presence* in households using *very* low-frequency smart meter data?

Challenges

Nature of electricity consumption data Very low frequency reading used by Smart Meters Long and variable length consumption series

Solutions

✓ The Appliance Detection Framework (ADF)

Data size
 Few labeled data for training a solution
 Large amount of non-labeled data

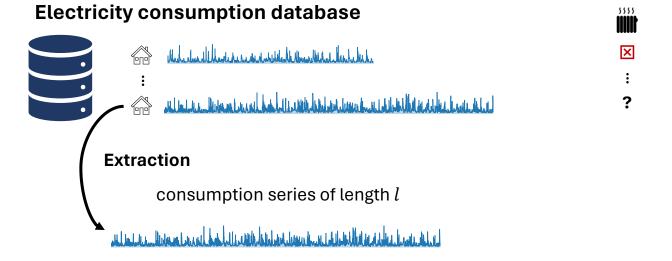
✓ TransApp: a deep-learning time series classifier

Proposed Approach: ADF

I. Introduction

II. Contribution 1/3: Appliance Detection Presence in Consumer Households

III. Conclusions

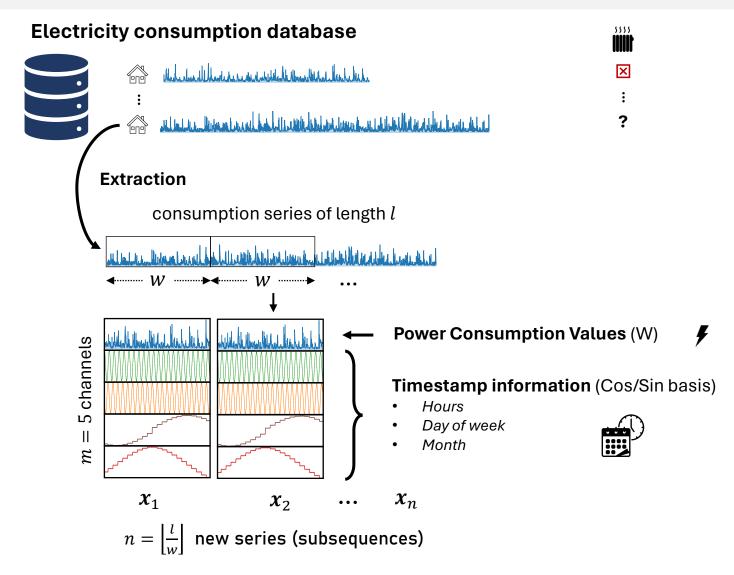


II. Contribution 1/3: Appliance Detection Presence in Consumer Households

III. Conclusions

The Appliance Detection Framework

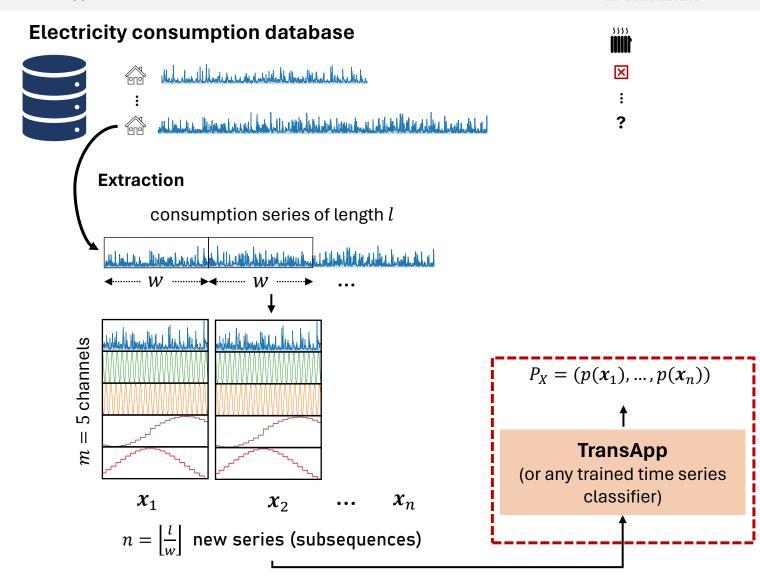
1. **Slice** series into subsequences and **concatenate** them with timestamp-encoded information



II. Contribution 1/3: Appliance Detection Presence in Consumer Households

III. Conclusions

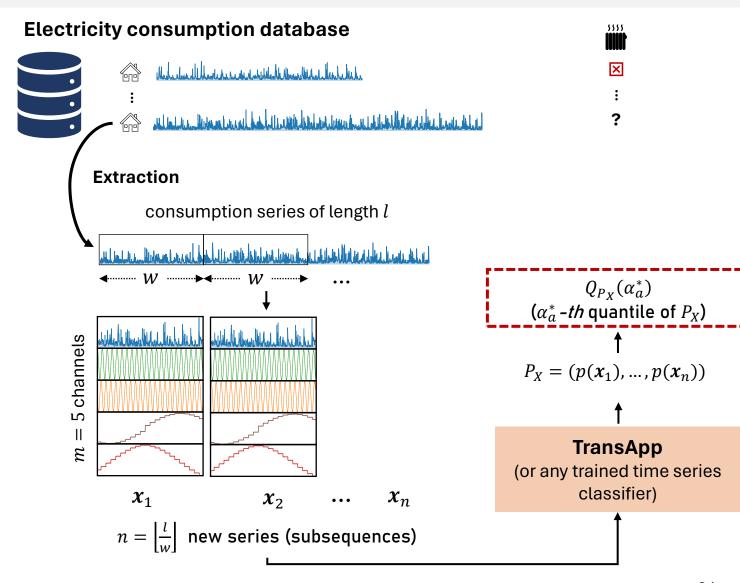
- 1. **Slice** series into subsequences and **concatenate** them with timestamp-encoded information
- 2. TransApp predicts probabilities for **each subsequences**



II. Contribution 1/3: Appliance Detection Presence in Consumer Households

III. Conclusion

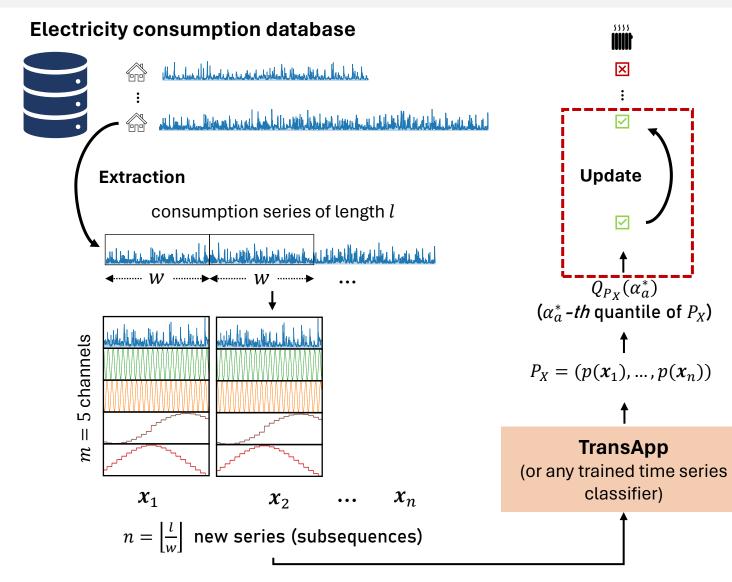
- 1. **Slice** series into subsequences and **concatenate** them with timestamp-encoded information
- 2. TransApp predicts probabilities for **each subsequences**
- 3. **Merge predicted probabilities** by extracting best quantile



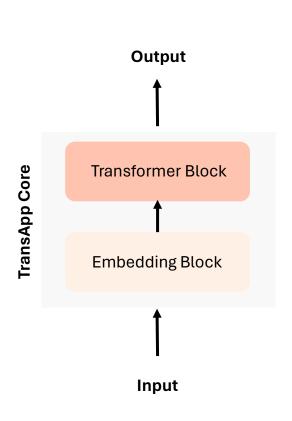
II. Contribution 1/3: Appliance Detection Presence in Consumer Households

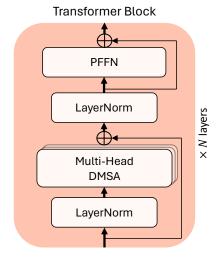
III. Conclusions

- 1. **Slice** series into subsequences and **concatenate** them with timestamp-encoded information
- 2. TransApp predicts probabilities for **each subsequences**
- 3. **Merge predicted probabilities** by extracting best quantile
- 4. Determine the final label prediction

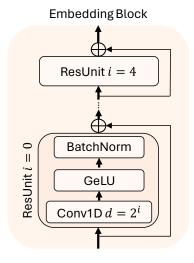


TransApp: A simple deep-learning architecture



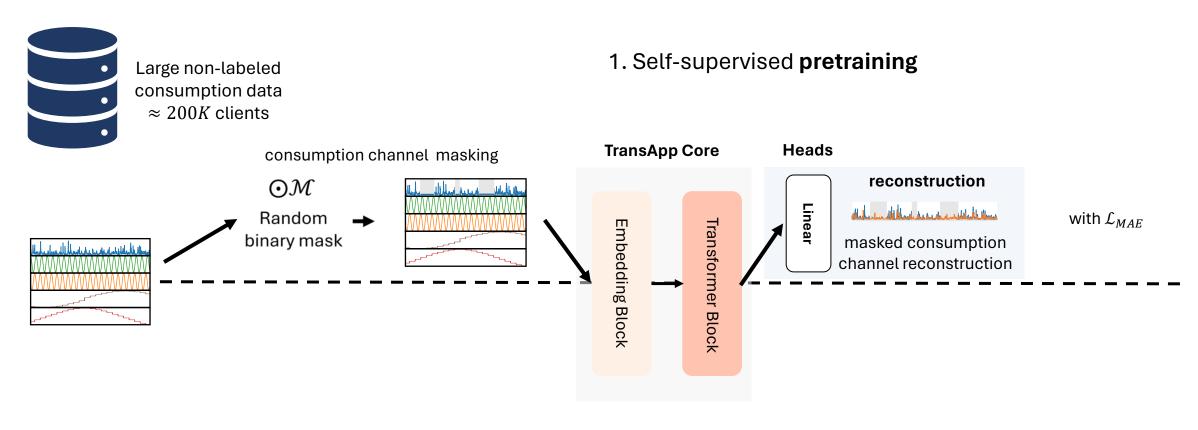


A **Transformer block** to learn useful representations and capture long-range dependencies

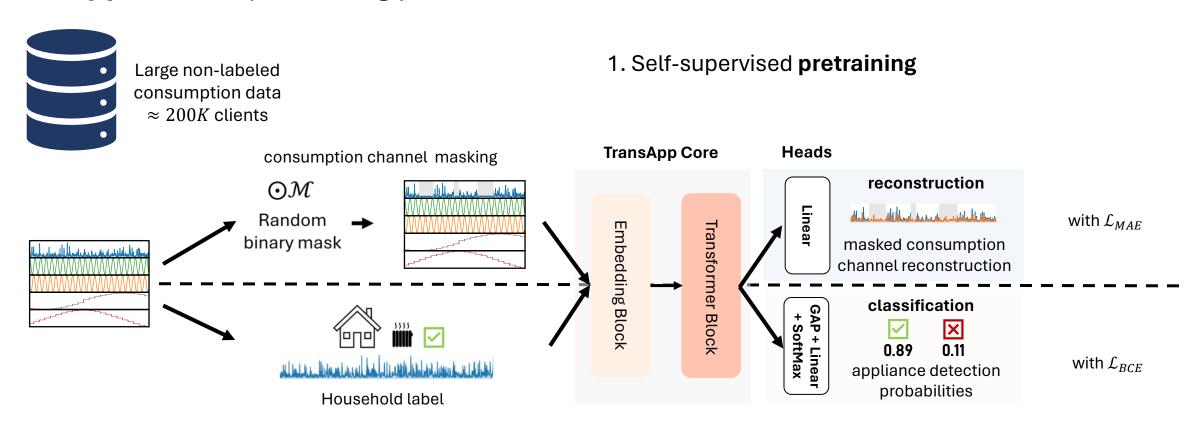


A strong **Convolutional Block** to extract localized features

TransApp: Two-steps training process



TransApp: Two-steps training process

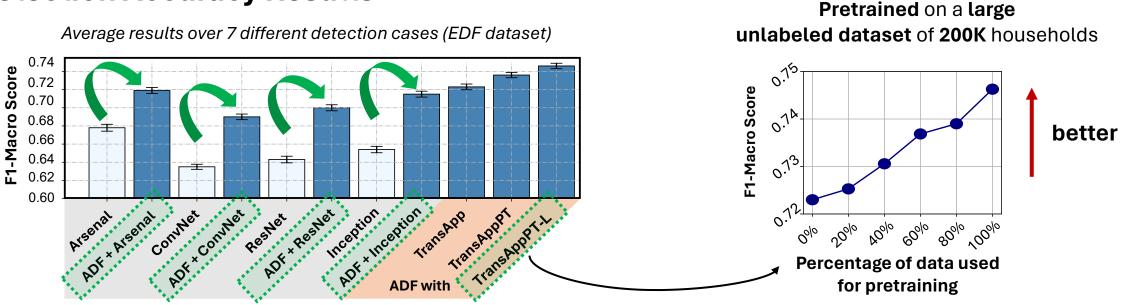


2. Supervised finetuning

II. Contribution 1/3 : Appliance Detection Presence in Consumer Households

III. Conclusions

Detection Accuracy Results



≈ +10% performance gain by using SotA
Time Series Classifiers within the ADF

Best solution: TransAppPT-L, +8.5% increase compared to the 2nd -best solution

Our solution accurately detects different appliances in real-world scenarios

Electric Vehicle

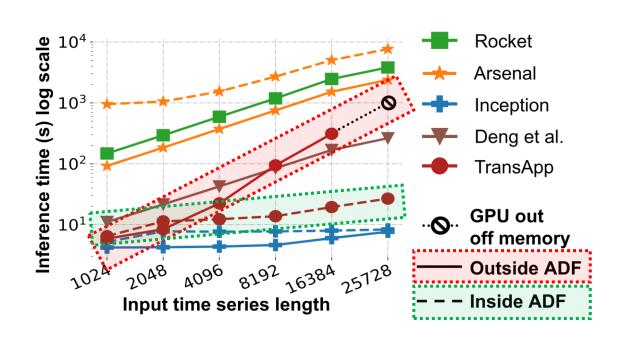
Heater

AC

Heat Pump

Water Heater

ADF makes TransApp scalable to long consumption series



EDF database4M clients recorded ≈1years

To run through the entire EDF's client consumption database

ADF & TransApp

ADF & Arsenal (2nd most accurate solution)

 \approx 1days

<<<

 \approx 42days

More than 40x faster

How to *enhance* the *accuracy* of *Appliance Detection Presence* in households using *very* low-frequency smart meter data?

Challenges

Solutions

- Nature of electricity consumption data
 Very low frequency reading used by Smart Meters
 Long and variable length consumption series
- ✓ The Appliance Detection Framework (ADF)

Data size
 Few labeled data for training a solution
 Large amount of non-labeled data

✓ TransApp: a deep-learning time series classifier

How to *enhance* the *accuracy* of *Appliance Detection Presence* in households using *very* low-frequency smart meter data?

Challenges

Nature of electricity consumption data
 Very low frequency reading used by Smart Meters
 Long and variable length consumption series

2. Data size

Few labeled data for training a solution **Large amount** of non-labeled data

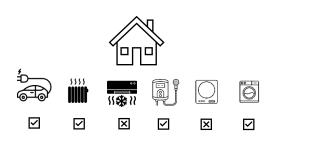
Solutions

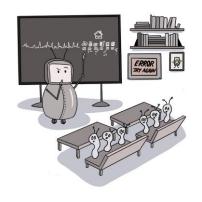
- ✓ The Appliance Detection Framework (ADF)
 - > Improve classifiers detection accuracy
 - Make classifiers less sensitive to the entire series length
- ✓ TransApp: a deep-learning time series classifier
 - Pretrained on large amount of non-labeled data to improve its accuracy
 - > Scalable to large database of long series

II.Contributions

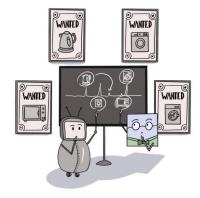
- Appliance Detection Presence in Consumers Household
- 2. Appliance Pattern Localization
- 3. Energy Disaggregation
- **III.Conclusions**

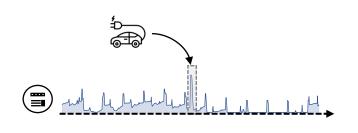
1. Appliance Detection - Time Series Classification





2. Appliance Pattern Localization - Pattern Identification

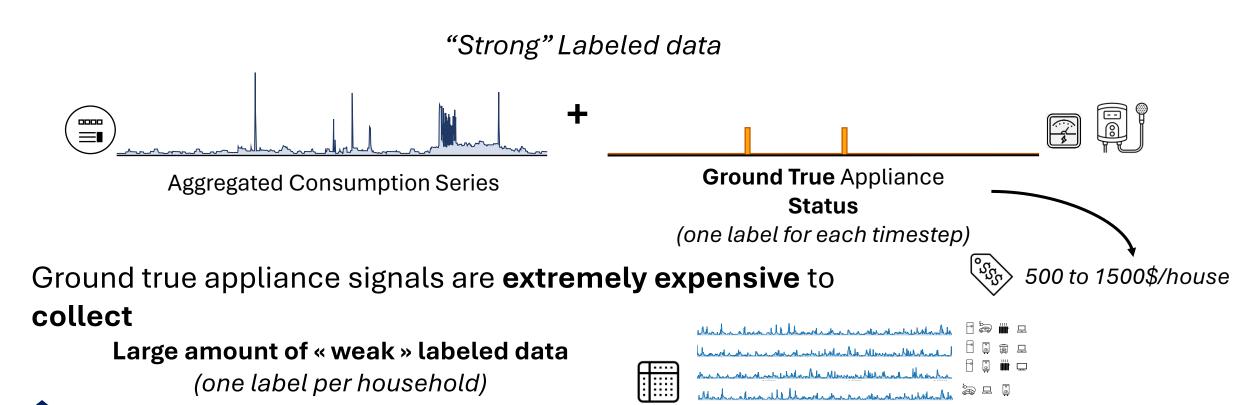




Appliance Pattern Localization

Max 50\$/house

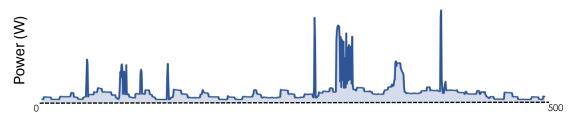
Recent State-of-the-Art solutions are based on deep-learning and a Strongly Supervised Paradigm



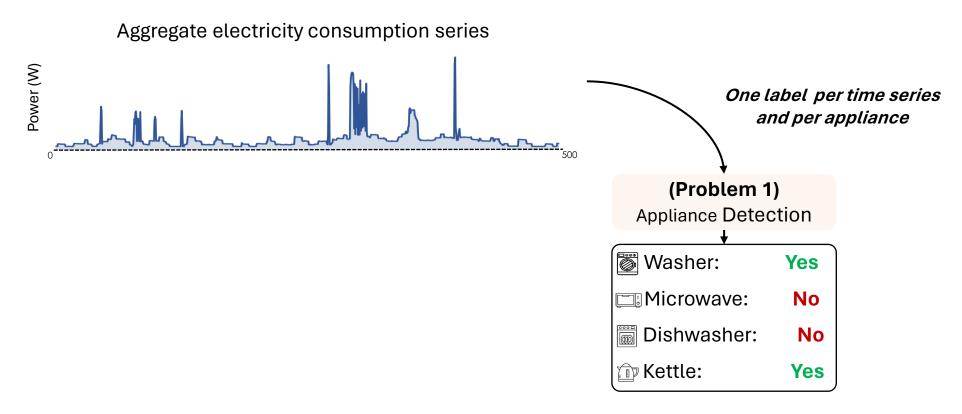
Dataset

Challenges

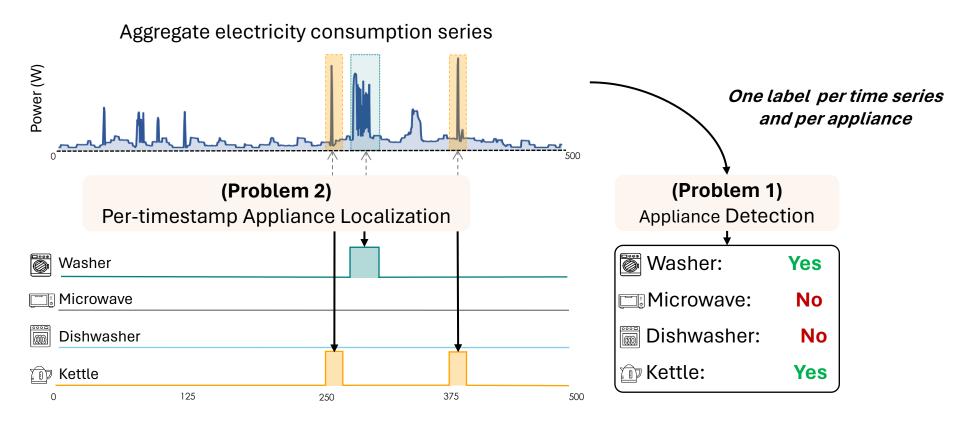
Aggregate electricity consumption series



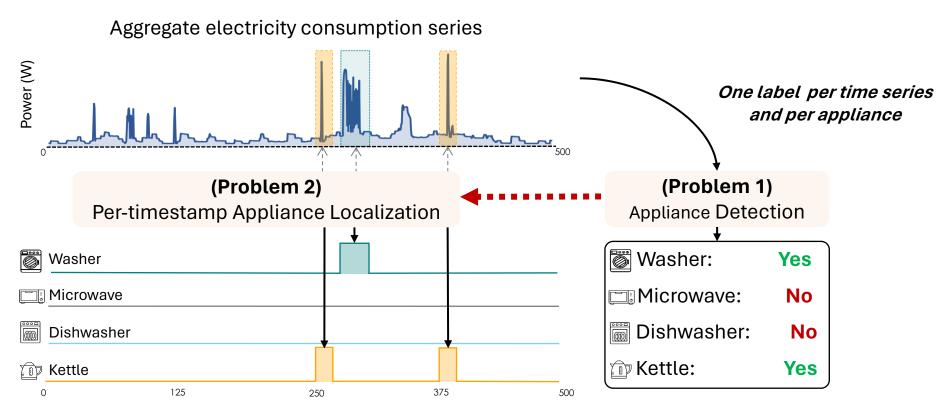
Challenges



Challenges



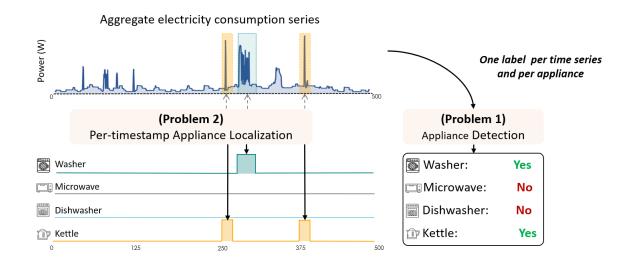
Challenges



Can we tackle the **Appliance Pattern Localization** problem using **minimal supervision**?

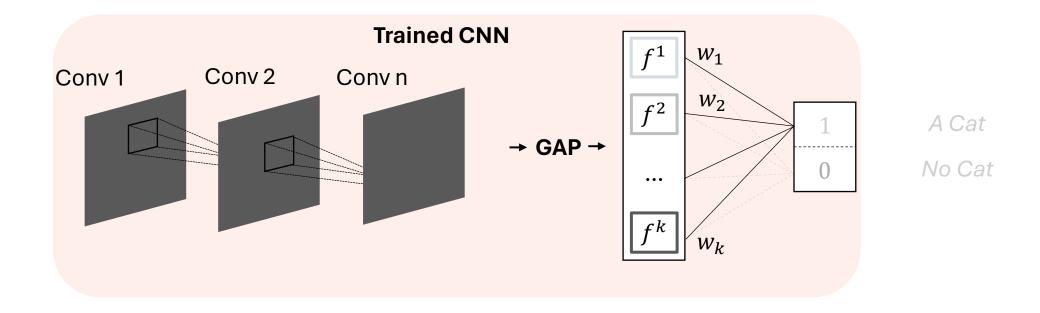
Challenge

Solution



 ✓ CamAL (Class Activation Map based Appliance Localization) I. Introduction II. Contribution 2/3: Appliance Pattern Localization III. Conclusions

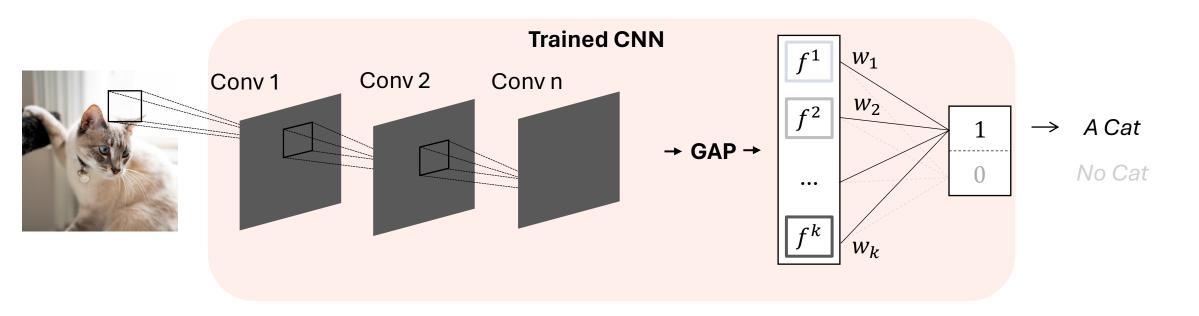
Explainable AI - Class Activation Map (CAM)



II. Contribution 2/3: Appliance Pattern Localization

III. Conclusions

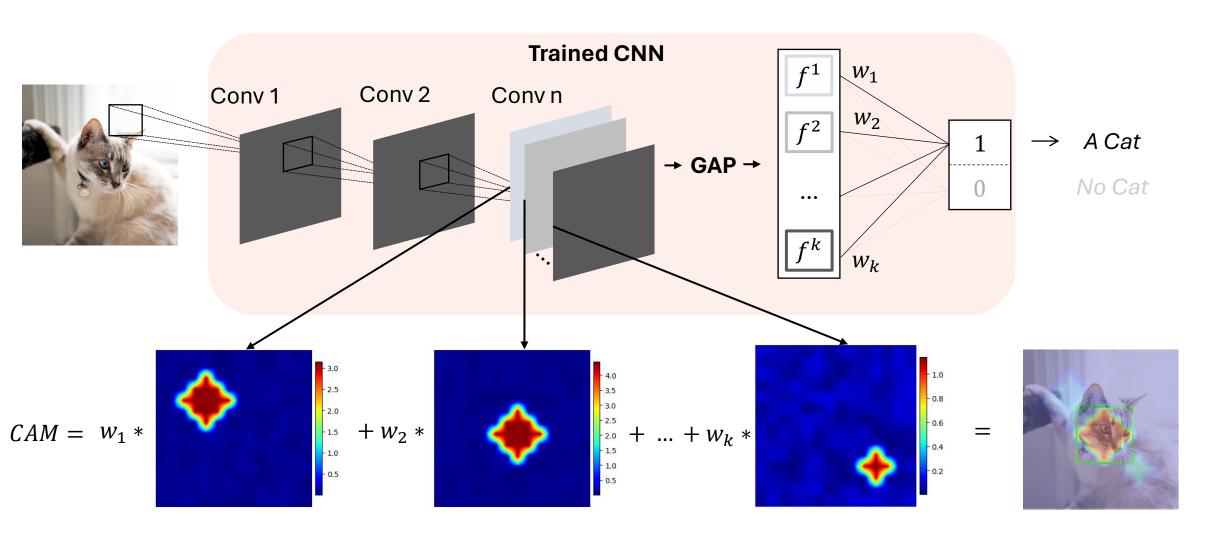
Explainable AI - Class Activation Map (CAM)



II. Contribution 2/3: Appliance Pattern Localization

III. Conclusion

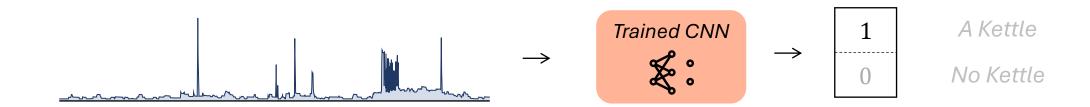
Explainable AI - Class Activation Map (CAM)



II. Contribution 2/3: Appliance Pattern Localization

III. Conclusions

CNNs (ResNet, Inception) perform well on the Appliance Detection task



II. Contribution 2/3: Appliance Pattern Localization

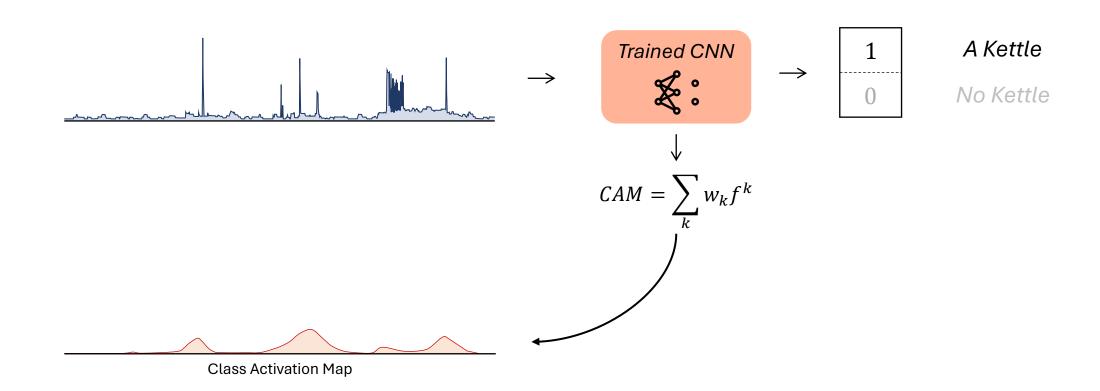
III. Conclusions

CNNs (ResNet, Inception) perform well on the Appliance Detection task

II. Contribution 2/3: Appliance Pattern Localization

III. Conclusions

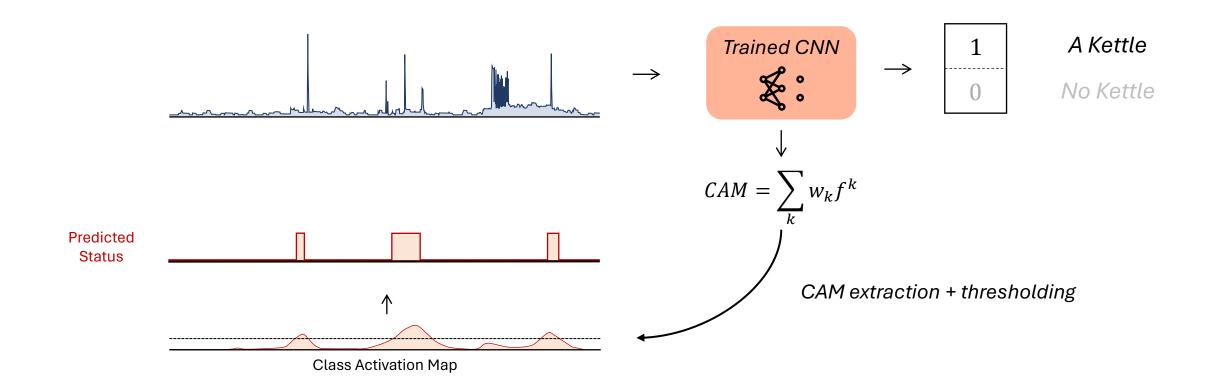
CNNs (ResNet, Inception) perform well on the Appliance Detection task



II. Contribution 2/3: Appliance Pattern Localization

III. Conclusions

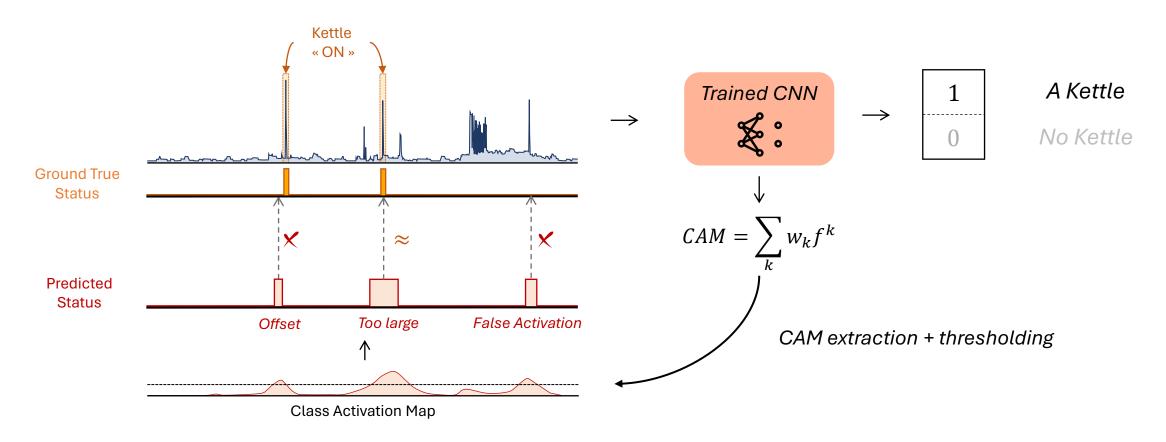
CNNs (ResNet, Inception) perform well on the Appliance Detection task



II. Contribution 2/3: Appliance Pattern Localization

III. Conclusions

CNNs (ResNet, Inception) perform well on the Appliance Detection task

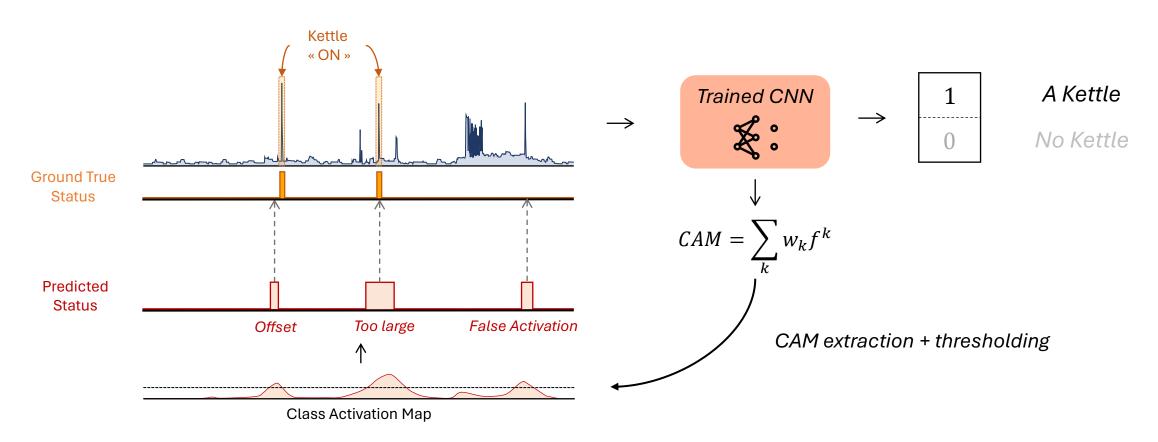


II. Contribution 2/3: Appliance Pattern Localization

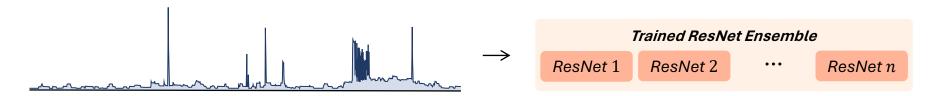
III. Conclusions

CNNs (ResNet, Inception) perform well on the Appliance Detection task

Is CAM a « Free Lunch » for **Appliance-Pattern Localization**? → **Not that simple...**



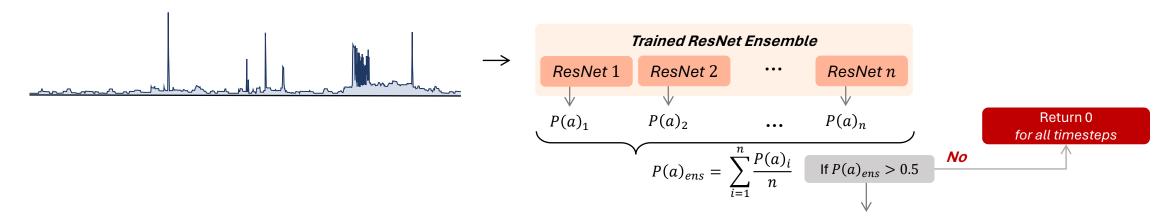
Improving **CAM** for **A**ppliance **L**ocalization



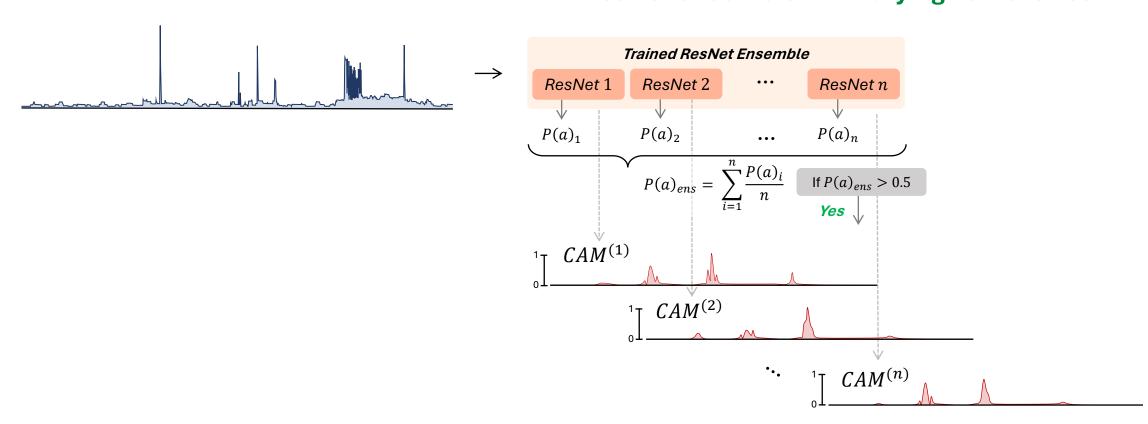
II. Contribution 2/3: Appliance Pattern Localization

III. Conclusions

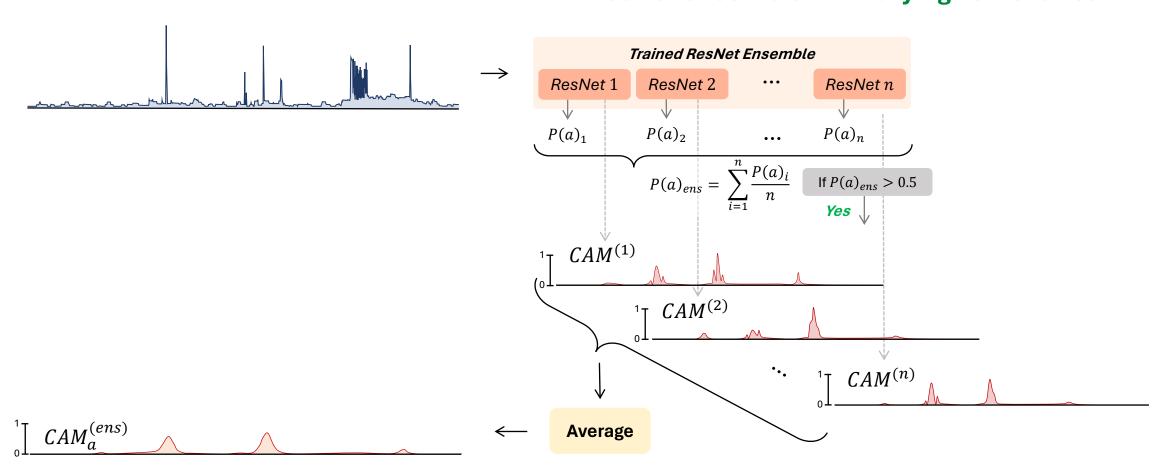
Improving **CAM** for **A**ppliance **L**ocalization



Improving **CAM** for **Appliance Localization**

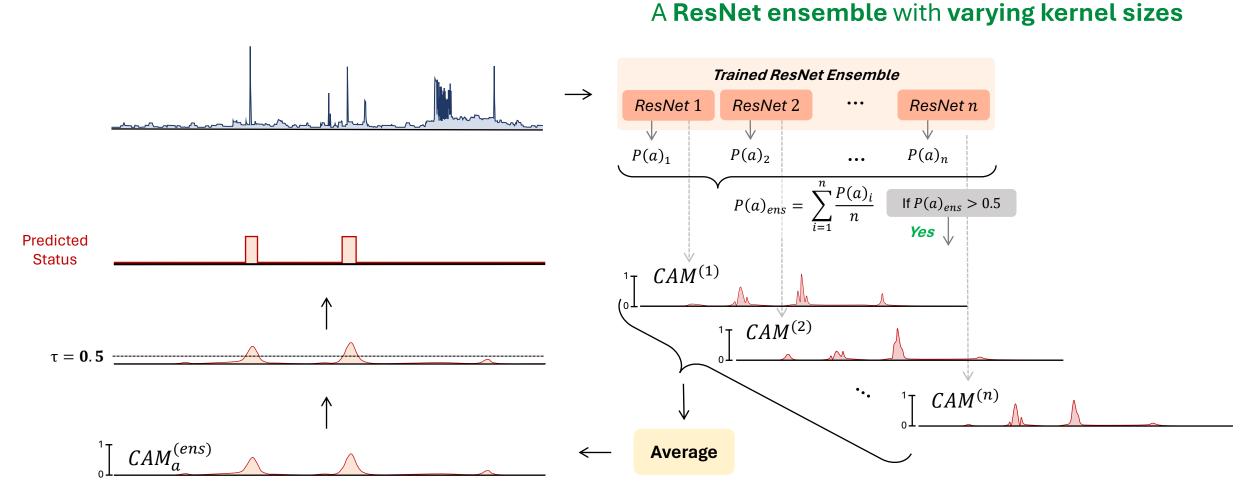


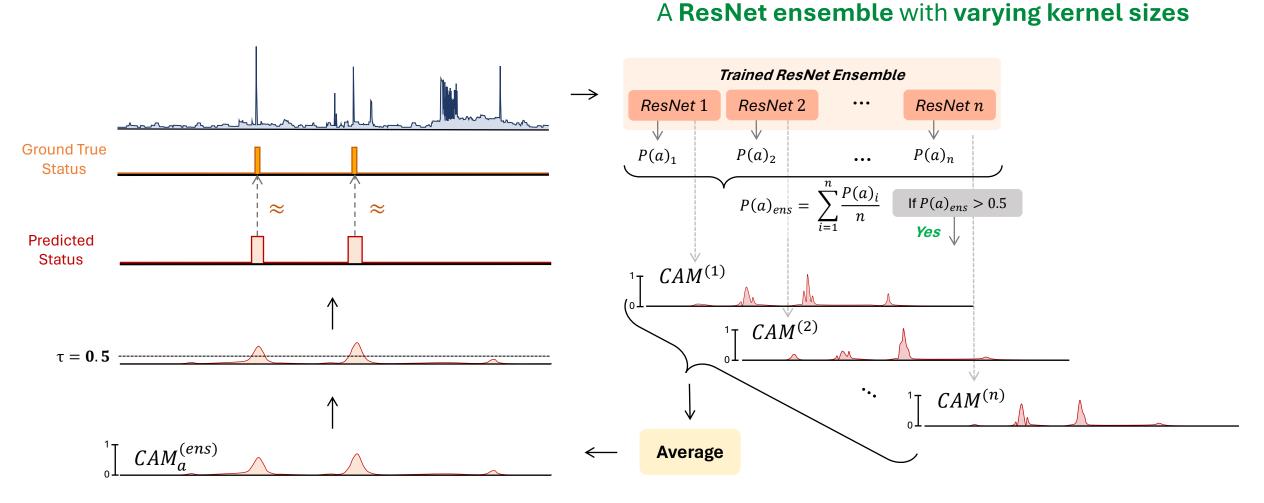
Improving **CAM** for **A**ppliance **L**ocalization

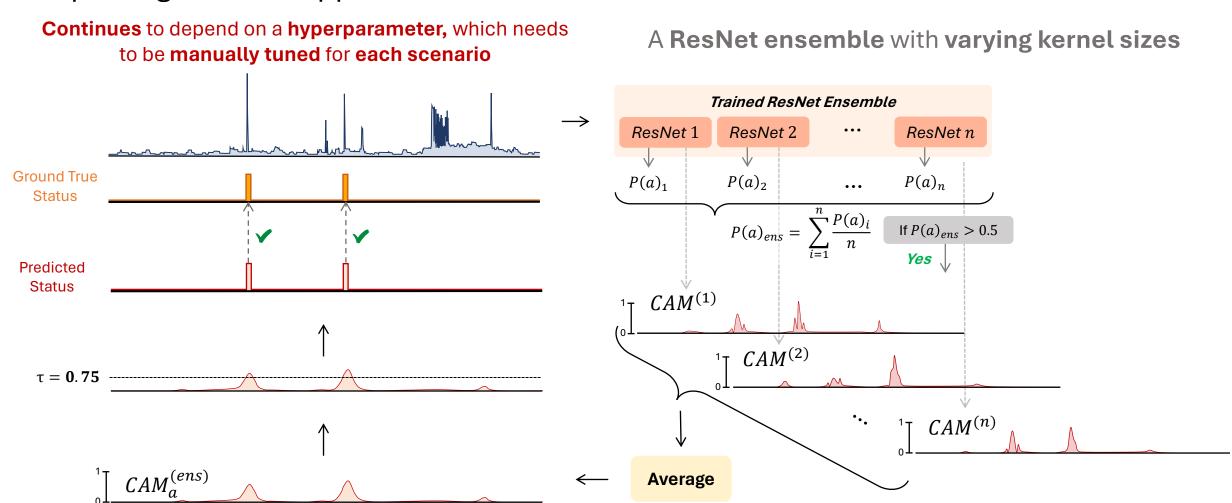


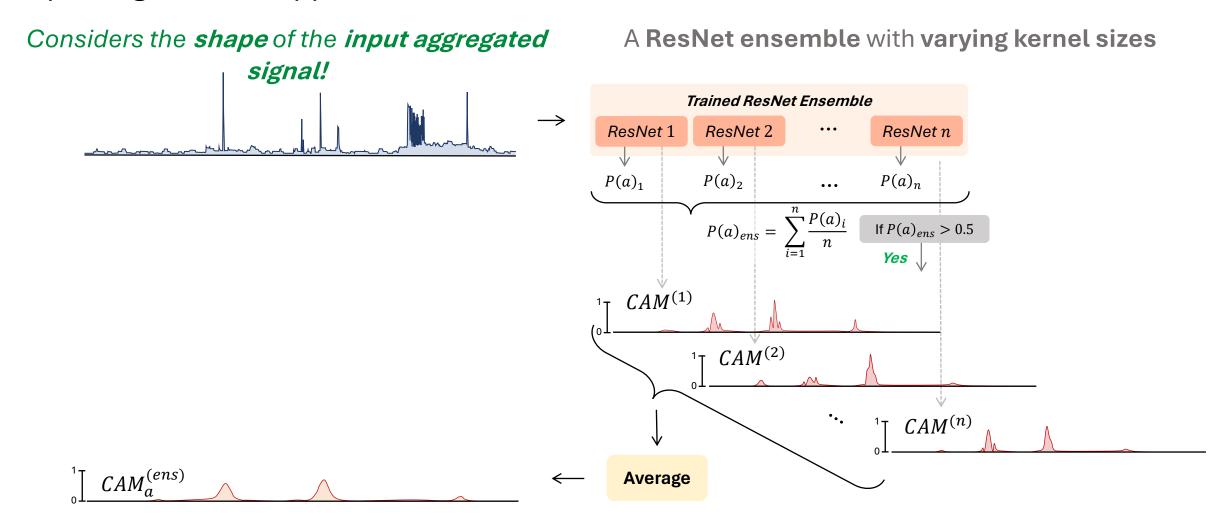
Improving **CAM** for **A**ppliance **L**ocalization

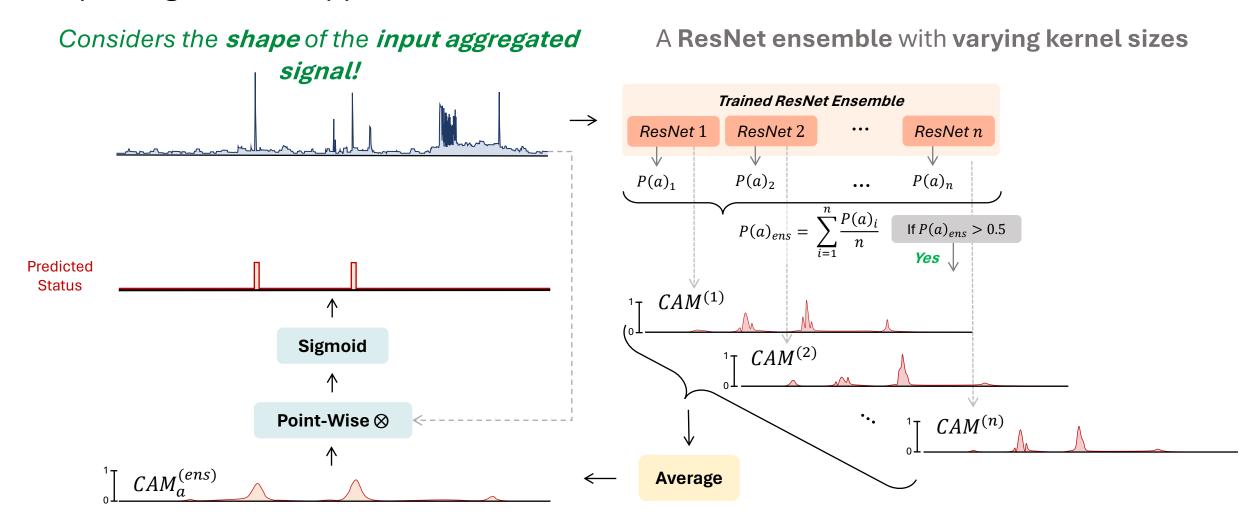
A PooMot anomallo with varying karnal size

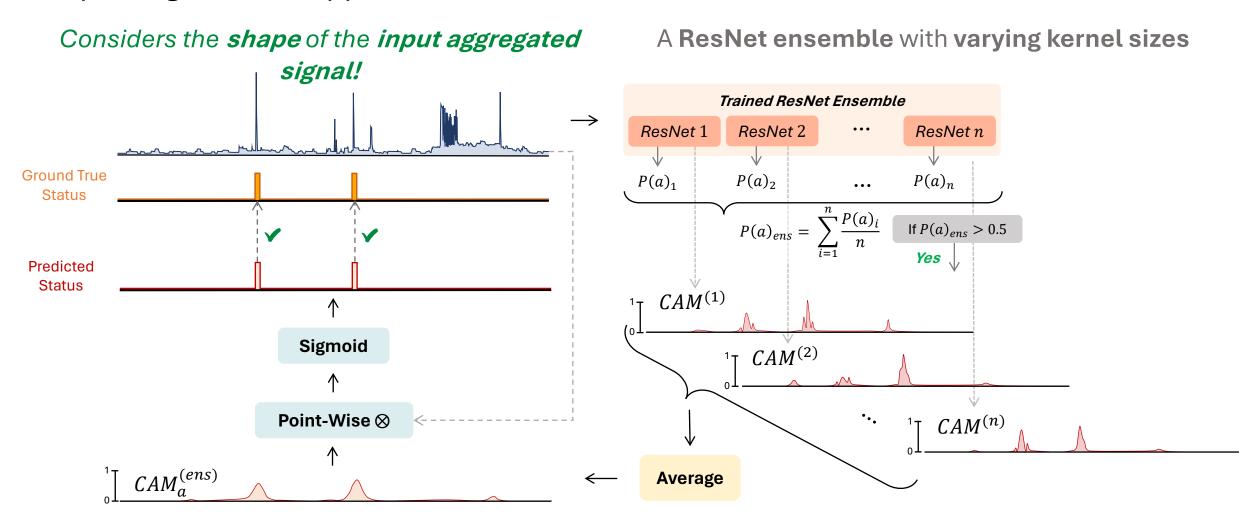




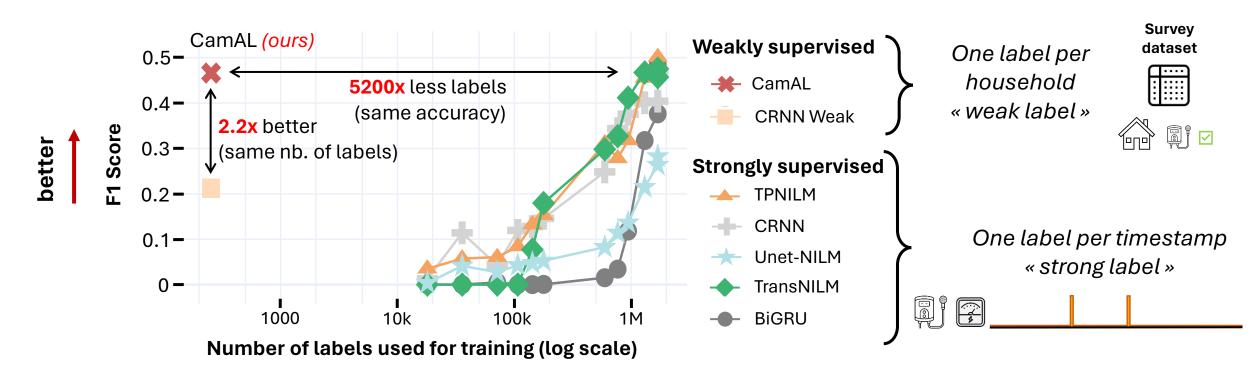






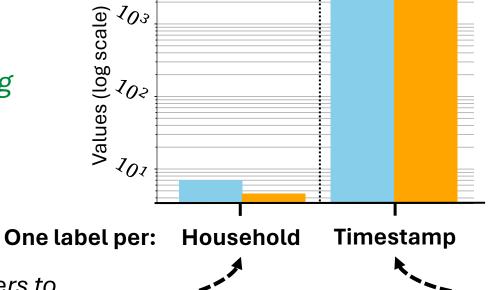


How does **CamAL perform** compared to **strongly-supervised baselines**?



II. Contribution 2/3: Appliance Pattern Localization

How do label-collection costs vary between approaches?



Cost for training strongly supervised NILM methods

dataset

Survey

Asking customers to fill out a questionnaire

Instrumenting households with dedicated submeters per appliance

Reduce collection **cost** (gCO2 and cash) **by up** to **2 magnitude orders!**

Can we tackle the **Appliance Pattern Localization** problem using **minimal supervision**?

Challenge

Aggregate electricity consumption series One label per time series and per appliance (Problem 2) (Problem 1) Per-timestamp Appliance Localization Appliance Detection **Washer** Washer: Yes Microwave: Microwave No Dishwasher Dishwasher: No 🗊 Kettle: Yes **Kettle**

Solution

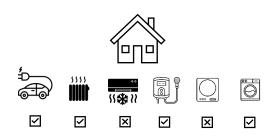
- ✓ CamAL (Class Activation Map based Appliance Localization)
 - Combine explainable AI with weak labels to tackle appliance-pattern localization
 - Achieve near-strongly supervised method's accuracy while drastically reducing labeling costs

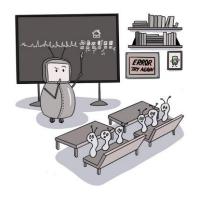
II.Contributions

- Appliance Detection Presence in Consumers Household
- 2. Appliance Pattern Localization
- 3. Energy Disaggregation

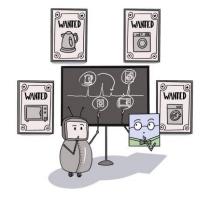
III.Conclusions

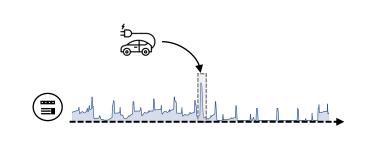
1. Appliance Detection - Time Series Classification





2. Appliance Pattern Localization – Pattern Identification





3. Energy Disaggregation - Time Series Regression

EDF's Appliance-Level Feedback Solution

- **2015** Launch of *Mon Suivi Conso* (web + app)
- **2018** Annual appliances estimate using a semisupervised statistics approach^[1]
- **1023 Deep-Learning based** approach \rightarrow monthly estimation reduced error by $\approx -70 \%$

Room for improvement: Monthly estimation is still coarse, and users recently requested daily appliance-level insights

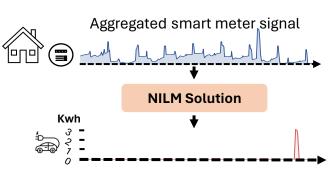
II. Contribution 3/3: Appliance Consumption Feedback

III. Conclusions

Energy Disaggregation

Current SotA methods are based on deep-learning

Operates on **subsequences** of an entire electricity consumption series



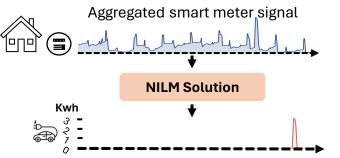
II. Contribution 3/3: Appliance Consumption Feedback

III. Conclusions

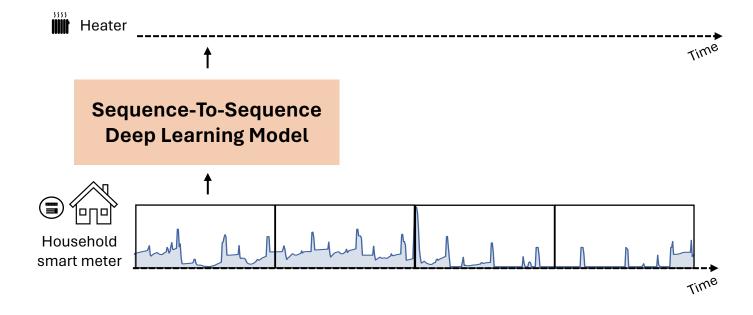
Energy Disaggregation

Current SotA methods are based on deep-learning

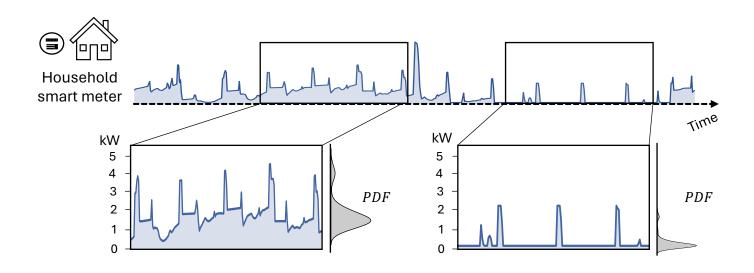
Operates on **subsequences** of an entire electricity consumption series



The Sequence-To-Sequence paradigm



Non-Stationarity Aspect of Electricity Consumption Data



Accounting for **non-stationarity** in deep learning **significantly improves** time series **forecasting accuracy** ! [1, 2]

I. Introduction

How to provide detailed and accurate *fine-grained* appliance consumption *feedback* to customers?

Challenges

1. Considering non-stationary

Mitigating the data drift within each subsequence

2. Delivering granular, actionable feedback to customers

Per-timestamp, daily, weekly and monthly

How to provide detailed and accurate *fine-grained* appliance consumption *feedback* to customers?

Challenges

Solutions

1. Considering non-stationary

Mitigating the data drift within each subsequence

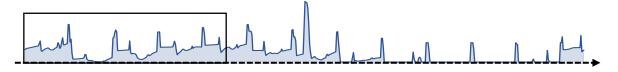
✓ NILMFormer

2. Delivering granular, actionable feedback to customers

Per-timestamp, daily, weekly and monthly

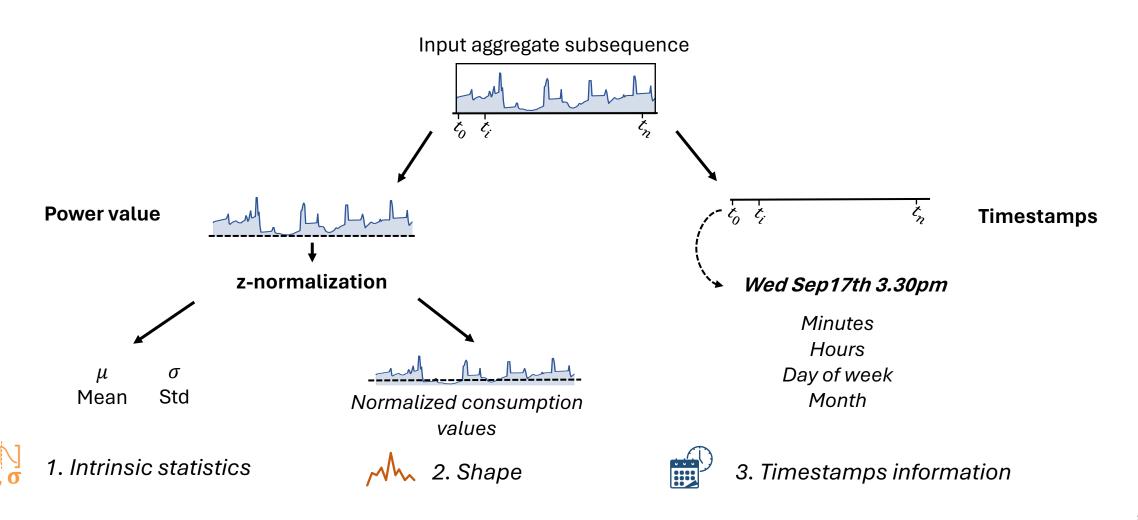
Deployment in "Mon Suivi Conso"

How to mitigate the subsequence data drift aspect?



Entire aggregate consumption series

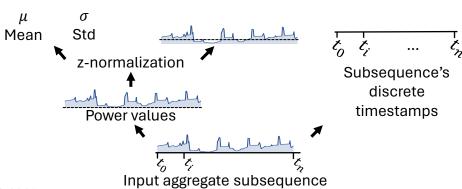
How to mitigate the subsequence data drift aspect?



I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

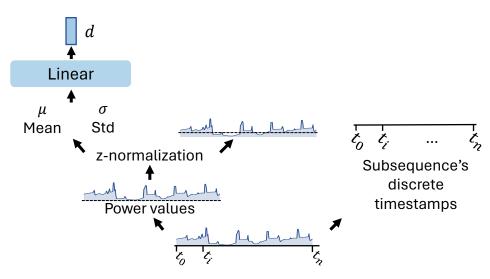
2. Shape



I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

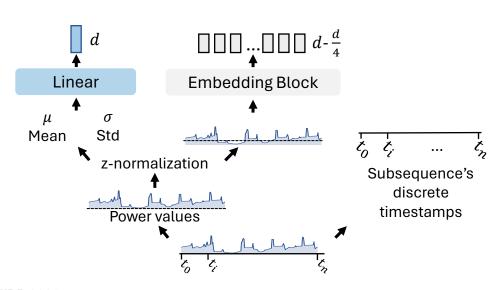
2. Shape



I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

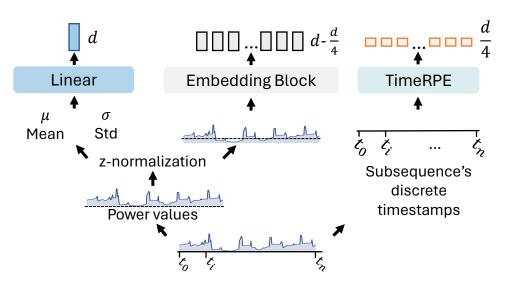
2. Shape



I. Distinct encoding modules (tokenization)

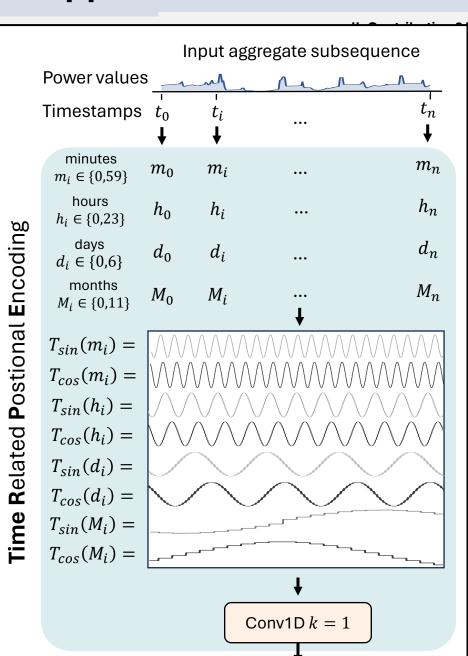
1. Intrinsic statistics

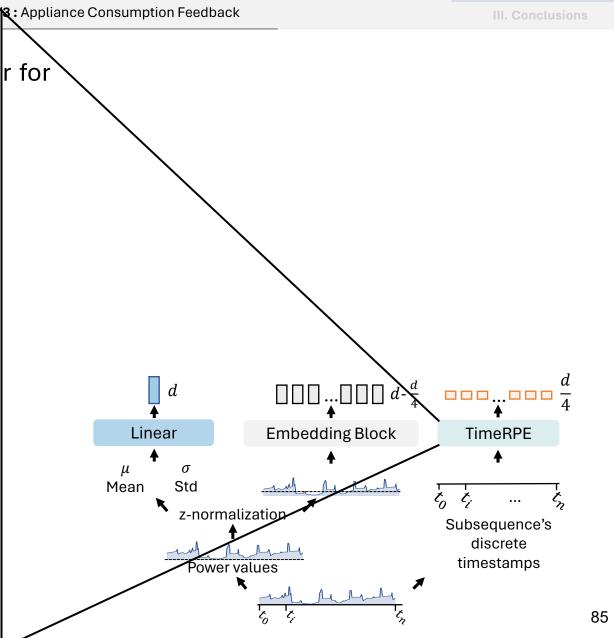
2. Shape



Proposed Approach: NILMFormer

I. Distinct



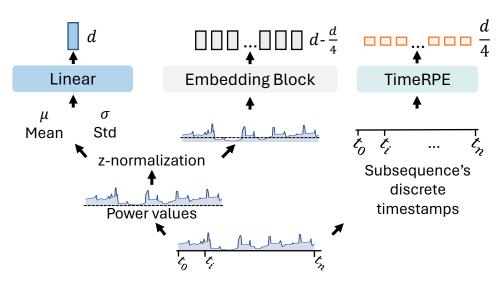


A. Petralia et al., NILI

I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

2. Shape



I. Introduction

NILMFormer: A Non-Stationarity Aware Transformer for Non-Intrusive Load Monitoring

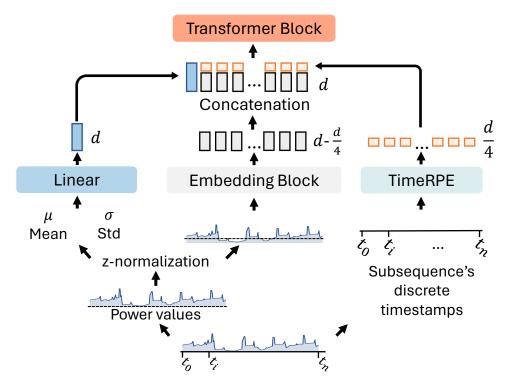
I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

2. Shape

3. Timestamps information

II. Embedding parts concatenation

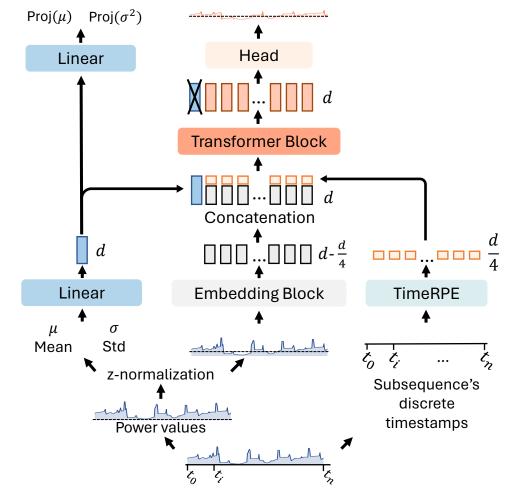


I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

2. Shape

- II. Embedding parts concatenation
- III. Subsequence's individual appliance power and statistics prediction

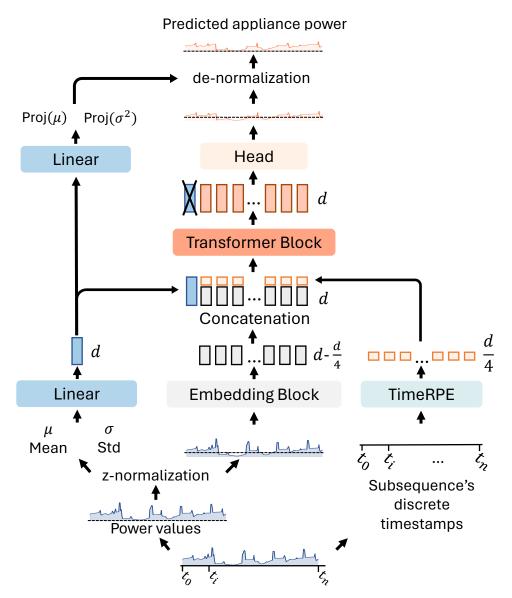


I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

2. Shape

- II. Embedding parts concatenation
- III. Subsequence's individual appliance power and statistics prediction
- IV. Output de-normalization

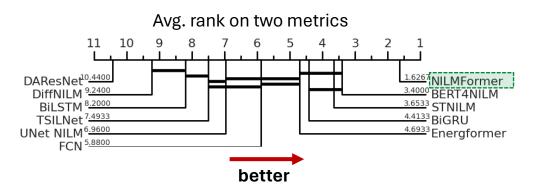


I. Introduction

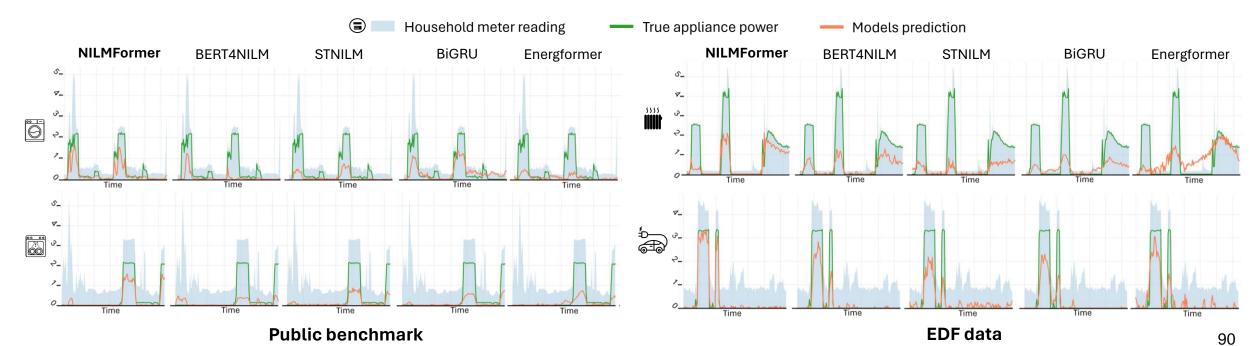
II. Contribution 3/3: Appliance Consumption Feedback

III. Conclusions

Performance comparison with **10** SotA NILM baselines



Averaged results over 4 datasets and 14 appliances disaggregation scenarios

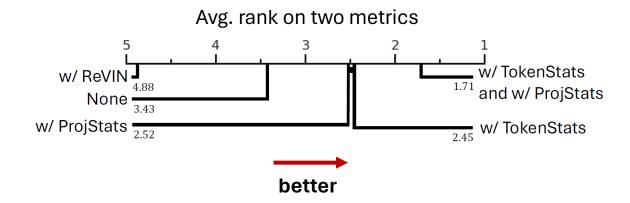


I. Introduction

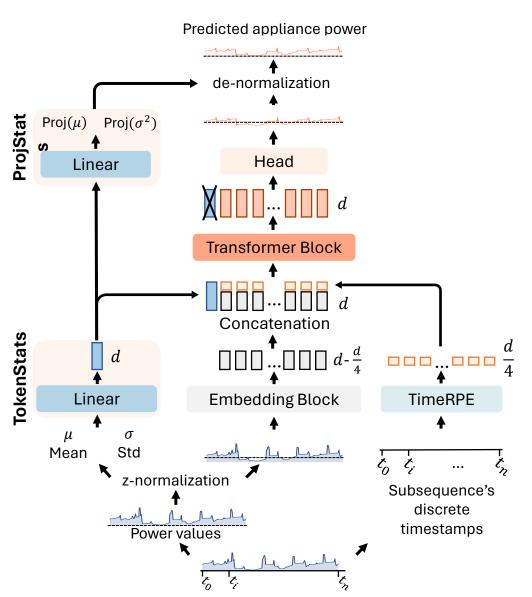
II. Contribution 3/3: Appliance Consumption Feedback

III. Conclusions

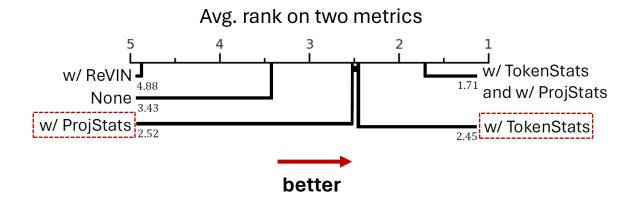
Effects of proposed **Non-Stationary Mechanisms** on **NILMFormer Performance**



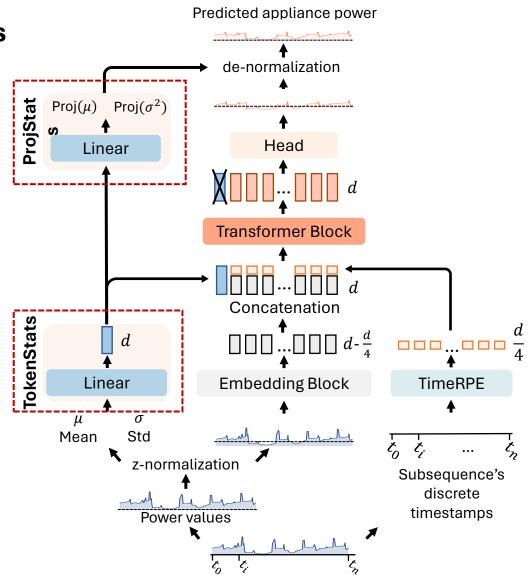
Averaged results over 4 datasets and 14 appliances disaggregation scenarios



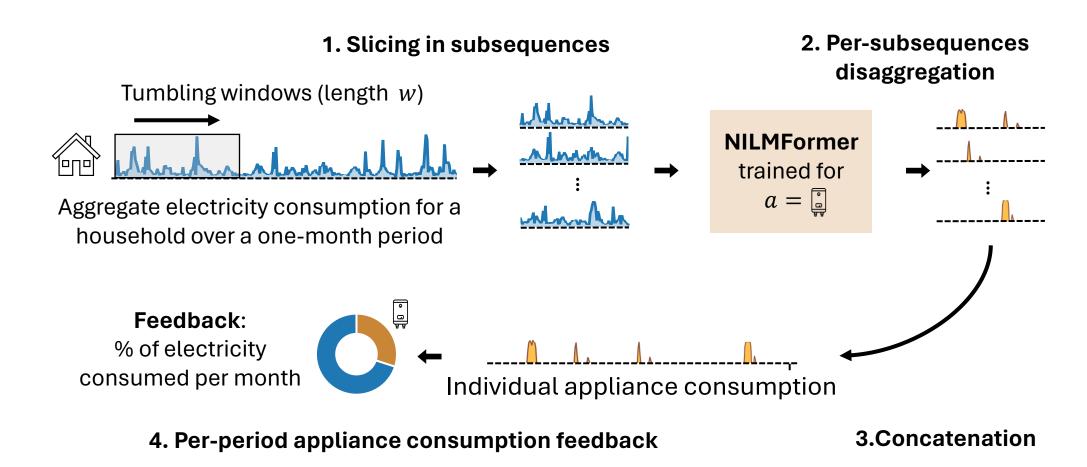
Effects of proposed **Non-Stationary Mechanisms** on **NILMFormer Performance**



Averaged results over 4 datasets and 14 appliances disaggregation scenarios

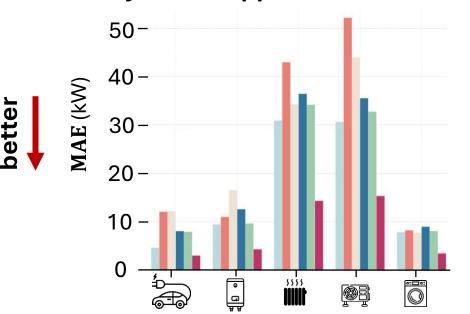


A Straightforward Framework for Per-Period Energy Estimation



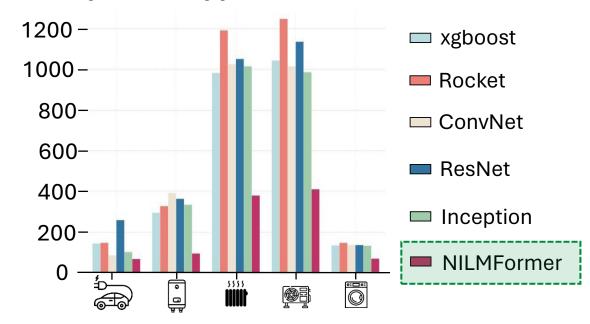
Performance Benchmark Against **TSER State-of-the-Art** (**EDF**'s Investigated Solution for *Mon Suivi Conso*)

Daily Power Appliance Estimation

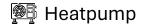


Achieves up to 52% lower error than the 2nd-best baseline(XGBoost)

Monthly Power Appliance Estimation



Achieves up to 151% lower error than the 2nd-best baseline (Inception)



Deployment of **NILMFormer** in *Mon Suivi Conso*

- Already deployed in two EDF subsidiaries:
 Électricité de Strasbourg and EDF Solutions Solaires
- Progressive rollout underway for the entire EDF customer base (4M users)
- Capable of processing the full EDF database in 11h

How to provide detailed and accurate *fine-grained* appliance consumption *feedback* to customers?

Challenges

Solutions

1. Considering non-stationary

Mitigating the data drift within each subsequence

2. Delivering granular, actionable feedback to customers

Per-timestamp, daily, weekly and monthly

✓ NILMFormer

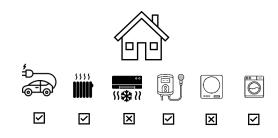
➤ Effectively takes into account the nonstationarity aspect of the data

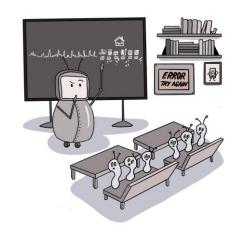
✓ Deployment in Mon Suivi Conso

- ➤ Backbone algorithm for appliance feedback
- Fine grain delivering insights

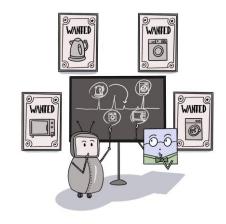
III. Conclusions

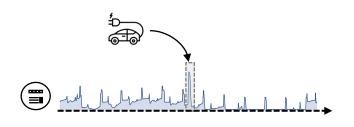
1. Appliance Detection



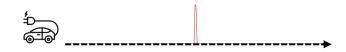


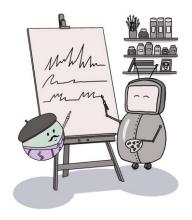
2. Appliance Pattern Localization





3. Energy Disaggregation





Conclusions

I. Introduction III. Conclusions III. Conclusions

Can we extract relevant information from electricity consumption time series collected by common smart meter at a very low frequency?

I. Introduction III. Conclusions III. Conclusions

Can we extract relevant information from electricity consumption time series collected by common smart meter at a very low frequency?

I. Introduction III. Conclusions III. Conclusions

Can we extract *relevant information* from *electricity consumption time series* collected by *common smart meter* at a *very low frequency*?

Yes

Contributions

ADF&TransApp

for

Appliance Detection in

Consumer Household

PVLDB, 2024 ACM e-Energy, 2023 CamAL

for

Weakly Supervised **Appliance**Pattern Localization

ICDE, 2025

(2 papers)

NILMFormer

for

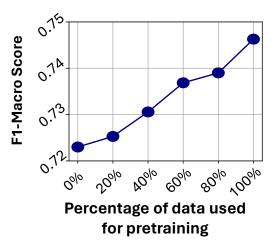
Energy Disaggregation and Detailed

Appliance Consumption **Feedback**

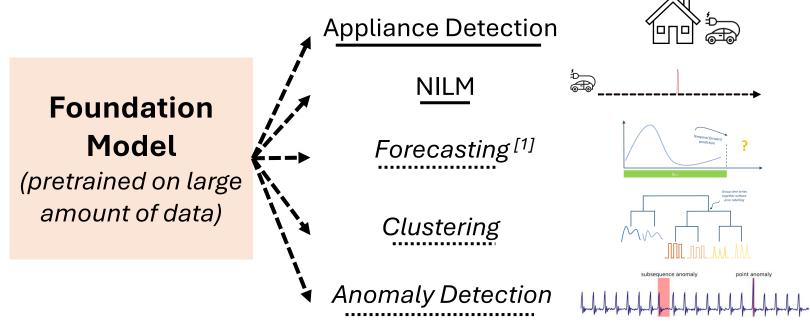
KDD, 2025

I. Introduction III. Contributions III. Conclusions

Toward General-Purpose **Foundation Models** for **Electricity Consumption** Analytics



Pretext tasks and large-scale data significantly improve TransApp's appliance detection accuracy



- Integration of **exogenous variables** (e.g., temperature, contractual metadata) into the learning process
- Model architecture resilient to heterogeneous sampling frequencies^[2]

Publications

I. Introduction III. Conclusions III. Conclusions

List of publications related to this thesis

- 1. Adrien Petralia, et al. NILMFormer: Non-Intrusive Load Monitoring that Accounts for Non-Stationarity. KDD, 2025.
- 2. Adrien Petralia, et al. Few Labels are all you need: A Weakly Supervised Framework for Appliance Localization in Smart-Meter Series. ICDE, 2025.
- 3. Adrien Petralia, et al., DeviceScope: An Interactive App to Detect and Localize Appliance Patterns in Electricity Consumption Time Series. ICDE, 2025.
- 4. Adrien Petralia. Time Series Analytics for Electricity Consumption Data. VLDB PhD Workshop, 2024.
- 5. Adrien Petralia, et al. ADF&TransApp: A Transformer-Based Framework for Appliance Detection Using Smart Meter Consumption Series. PVLDB, 2024.
- 6. Adrien Petralia, et al. Détection d'appareils dans les séries temporelles de compteurs intelligents très basse fréquence. BDA, 2023.
- 7. Adrien Petralia, et al. Appliance Detection Using Very Low-Frequency Smart Meter Time Series. ACM e-Energy, 2023.

Patents

- 1. **Adrien Petralia**, Paul Boniol, Themis Palpanas, Philippe Charpentier. *Détermination d'une activation au cours du temps d'un équipement donné au sein d'un ensemble d'équipements à partir de données collectées. French Patent FR2504769, 2025.*
- 2. **Adrien Petralia**, Themis Palpanas, Philippe Charpentier, Claire Lambert. *Extraction de la consommation électrique d'un équipement individuel au sein d'un ensemble d'équipements connectes a un réseau électrique. French Patent FR2410061, 2024.*
- 3. Luc Dufour, Pascal Chaussumier, **Adrien Petralia**, Philippe Charpentier, Themis Palpanas, Justin Capik. *Caractérisation pour l'optimisation de la consommation électrique d'un ensemble d'équipements connectes a un réseau électrique*. **French Patent FR2314217**, **2023**.

Thank you for your attention!

Deep Learning for Electricity Consumption Time Series Analytics

Adrien Petralia

supervised by *Prof. Themis Palpanas* and *Philippe Charpentier*

